mathlib documentation

topology.​uniform_space.​pi

topology.​uniform_space.​pi

Indexed product of uniform spaces

@[instance]
def Pi.​uniform_space {ι : Type u_1} (α : ι → Type u) [U : Π (i : ι), uniform_space (α i)] :
uniform_space (Π (i : ι), α i)

Equations
theorem Pi.​uniformity {ι : Type u_1} (α : ι → Type u) [U : Π (i : ι), uniform_space (α i)] :
uniformity (Π (i : ι), α i) = ⨅ (i : ι), filter.comap (λ (a : (Π (i : ι), α i) × Π (i : ι), α i), (a.fst i, a.snd i)) (uniformity (α i))

theorem Pi.​uniform_continuous_proj {ι : Type u_1} (α : ι → Type u) [U : Π (i : ι), uniform_space (α i)] (i : ι) :
uniform_continuous (λ (a : Π (i : ι), α i), a i)

@[instance]
def Pi.​complete {ι : Type u_1} (α : ι → Type u) [U : Π (i : ι), uniform_space (α i)] [∀ (i : ι), complete_space (α i)] :
complete_space (Π (i : ι), α i)

Equations
  • _ = _
@[instance]
def Pi.​separated {ι : Type u_1} (α : ι → Type u) [U : Π (i : ι), uniform_space (α i)] [∀ (i : ι), separated_space (α i)] :
separated_space (Π (i : ι), α i)

Equations
  • _ = _