mathlib documentation

topology.​homeomorph

topology.​homeomorph

structure homeomorph (α : Type u_5) (β : Type u_6) [topological_space α] [topological_space β] :
Type (max u_5 u_6)

α and β are homeomorph, also called topological isomoph

@[instance]
def homeomorph.​has_coe_to_fun {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] :

Equations
@[simp]
theorem homeomorph.​homeomorph_mk_coe {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (a : α β) (b : continuous a.to_fun . "continuity'") (c : continuous a.inv_fun . "continuity'") :

theorem homeomorph.​coe_eq_to_equiv {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) (a : α) :
h a = (h.to_equiv) a

def homeomorph.​refl (α : Type u_1) [topological_space α] :
α ≃ₜ α

Identity map is a homeomorphism.

Equations
def homeomorph.​trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] :
α ≃ₜ ββ ≃ₜ γα ≃ₜ γ

Composition of two homeomorphisms.

Equations
def homeomorph.​symm {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] :
α ≃ₜ ββ ≃ₜ α

Inverse of a homeomorphism.

Equations
@[simp]
theorem homeomorph.​homeomorph_mk_coe_symm {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (a : α β) (b : continuous a.to_fun . "continuity'") (c : continuous a.inv_fun . "continuity'") :

theorem homeomorph.​continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​symm_comp_self {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​self_comp_symm {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​range_coe {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​image_symm {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​preimage_symm {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​induced_eq {α : Type u_1} {β : Type u_2} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​coinduced_eq {α : Type u_1} {β : Type u_2} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​embedding {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​compact_image {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {s : set α} (h : α ≃ₜ β) :

theorem homeomorph.​compact_preimage {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {s : set β} (h : α ≃ₜ β) :

theorem homeomorph.​dense_embedding {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​is_open_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

theorem homeomorph.​is_closed_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

@[simp]
theorem homeomorph.​is_open_preimage {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) {s : set β} :

def homeomorph.​homeomorph_of_continuous_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (e : α β) :

If an bijective map e : α ≃ β is continuous and open, then it is a homeomorphism.

Equations
theorem homeomorph.​comp_continuous_on_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] (h : α ≃ₜ β) (f : γ → α) (s : set γ) :

theorem homeomorph.​comp_continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] (h : α ≃ₜ β) (f : γ → α) :

theorem homeomorph.​quotient_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (h : α ≃ₜ β) :

def homeomorph.​set_congr {α : Type u_1} [topological_space α] {s t : set α} :
s = ts ≃ₜ t

If two sets are equal, then they are homeomorphic.

Equations
def homeomorph.​sum_congr {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] :
α ≃ₜ βγ ≃ₜ δα γ ≃ₜ β δ

Sum of two homeomorphisms.

Equations
def homeomorph.​prod_congr {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] :
α ≃ₜ βγ ≃ₜ δα × γ ≃ₜ β × δ

Product of two homeomorphisms.

Equations
def homeomorph.​prod_comm (α : Type u_1) (β : Type u_2) [topological_space α] [topological_space β] :
α × β ≃ₜ β × α

α × β is homeomorphic to β × α.

Equations
def homeomorph.​prod_assoc (α : Type u_1) (β : Type u_2) (γ : Type u_3) [topological_space α] [topological_space β] [topological_space γ] :
× β) × γ ≃ₜ α × β × γ

(α × β) × γ is homeomorphic to α × (β × γ).

Equations
def homeomorph.​ulift {α : Type u} [topological_space α] :

ulift α is homeomorphic to α.

Equations
def homeomorph.​sum_prod_distrib {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] :
β) × γ ≃ₜ α × γ β × γ

(α ⊕ β) × γ is homeomorphic to α × γ ⊕ β × γ.

Equations
def homeomorph.​prod_sum_distrib {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] :
α × γ) ≃ₜ α × β α × γ

α × (β ⊕ γ) is homeomorphic to α × β ⊕ α × γ.

Equations
def homeomorph.​sigma_prod_distrib {β : Type u_2} [topological_space β] {ι : Type u_5} {σ : ι → Type u_6} [Π (i : ι), topological_space (σ i)] :
(Σ (i : ι), σ i) × β ≃ₜ Σ (i : ι), σ i × β

(Σ i, σ i) × β is homeomorphic to Σ i, (σ i × β).

Equations