structure
homeomorph
(α : Type u_5)
(β : Type u_6)
[topological_space α]
[topological_space β] :
Type (max u_5 u_6)
- to_equiv : α ≃ β
- continuous_to_fun : continuous c.to_equiv.to_fun . "continuity'"
- continuous_inv_fun : continuous c.to_equiv.inv_fun . "continuity'"
α and β are homeomorph, also called topological isomoph
@[instance]
def
homeomorph.has_coe_to_fun
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β] :
has_coe_to_fun (α ≃ₜ β)
@[simp]
theorem
homeomorph.homeomorph_mk_coe
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(a : α ≃ β)
(b : continuous a.to_fun . "continuity'")
(c : continuous a.inv_fun . "continuity'") :
⇑{to_equiv := a, continuous_to_fun := b, continuous_inv_fun := c} = ⇑a
theorem
homeomorph.coe_eq_to_equiv
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β)
(a : α) :
Identity map is a homeomorphism.
Equations
- homeomorph.refl α = {to_equiv := {to_fun := (equiv.refl α).to_fun, inv_fun := (equiv.refl α).inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := _, continuous_inv_fun := _}
def
homeomorph.trans
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[topological_space α]
[topological_space β]
[topological_space γ] :
Composition of two homeomorphisms.
Inverse of a homeomorphism.
@[simp]
theorem
homeomorph.homeomorph_mk_coe_symm
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(a : α ≃ β)
(b : continuous a.to_fun . "continuity'")
(c : continuous a.inv_fun . "continuity'") :
⇑({to_equiv := a, continuous_to_fun := b, continuous_inv_fun := c}.symm) = ⇑(a.symm)
theorem
homeomorph.continuous
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.symm_comp_self
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.self_comp_symm
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.range_coe
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.image_symm
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.preimage_symm
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.induced_eq
{α : Type u_1}
{β : Type u_2}
[tα : topological_space α]
[tβ : topological_space β]
(h : α ≃ₜ β) :
topological_space.induced ⇑h tβ = tα
theorem
homeomorph.coinduced_eq
{α : Type u_1}
{β : Type u_2}
[tα : topological_space α]
[tβ : topological_space β]
(h : α ≃ₜ β) :
topological_space.coinduced ⇑h tα = tβ
theorem
homeomorph.embedding
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.compact_image
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
{s : set α}
(h : α ≃ₜ β) :
is_compact (⇑h '' s) ↔ is_compact s
theorem
homeomorph.compact_preimage
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
{s : set β}
(h : α ≃ₜ β) :
is_compact (⇑h ⁻¹' s) ↔ is_compact s
theorem
homeomorph.dense_embedding
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.is_open_map
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
theorem
homeomorph.is_closed_map
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
@[simp]
theorem
homeomorph.is_open_preimage
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β)
{s : set β} :
def
homeomorph.homeomorph_of_continuous_open
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(e : α ≃ β) :
continuous ⇑e → is_open_map ⇑e → α ≃ₜ β
If an bijective map e : α ≃ β
is continuous and open, then it is a homeomorphism.
Equations
- homeomorph.homeomorph_of_continuous_open e h₁ h₂ = {to_equiv := {to_fun := e.to_fun, inv_fun := e.inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := h₁, continuous_inv_fun := _}
theorem
homeomorph.comp_continuous_on_iff
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[topological_space α]
[topological_space β]
[topological_space γ]
(h : α ≃ₜ β)
(f : γ → α)
(s : set γ) :
continuous_on (⇑h ∘ f) s ↔ continuous_on f s
theorem
homeomorph.comp_continuous_iff
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[topological_space α]
[topological_space β]
[topological_space γ]
(h : α ≃ₜ β)
(f : γ → α) :
continuous (⇑h ∘ f) ↔ continuous f
theorem
homeomorph.quotient_map
{α : Type u_1}
{β : Type u_2}
[topological_space α]
[topological_space β]
(h : α ≃ₜ β) :
If two sets are equal, then they are homeomorphic.
Equations
- homeomorph.set_congr h = {to_equiv := {to_fun := (equiv.set_congr h).to_fun, inv_fun := (equiv.set_congr h).inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := _, continuous_inv_fun := _}
def
homeomorph.sum_congr
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[topological_space α]
[topological_space β]
[topological_space γ]
[topological_space δ] :
Sum of two homeomorphisms.
def
homeomorph.prod_congr
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[topological_space α]
[topological_space β]
[topological_space γ]
[topological_space δ] :
Product of two homeomorphisms.
Equations
- h₁.prod_congr h₂ = {to_equiv := {to_fun := (h₁.to_equiv.prod_congr h₂.to_equiv).to_fun, inv_fun := (h₁.to_equiv.prod_congr h₂.to_equiv).inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := _, continuous_inv_fun := _}
def
homeomorph.prod_comm
(α : Type u_1)
(β : Type u_2)
[topological_space α]
[topological_space β] :
α × β
is homeomorphic to β × α
.
Equations
- homeomorph.prod_comm α β = {to_equiv := {to_fun := (equiv.prod_comm α β).to_fun, inv_fun := (equiv.prod_comm α β).inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := _, continuous_inv_fun := _}
def
homeomorph.prod_assoc
(α : Type u_1)
(β : Type u_2)
(γ : Type u_3)
[topological_space α]
[topological_space β]
[topological_space γ] :
(α × β) × γ
is homeomorphic to α × (β × γ)
.
Equations
- homeomorph.prod_assoc α β γ = {to_equiv := {to_fun := (equiv.prod_assoc α β γ).to_fun, inv_fun := (equiv.prod_assoc α β γ).inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := _, continuous_inv_fun := _}
ulift α
is homeomorphic to α
.
Equations
- homeomorph.ulift = {to_equiv := {to_fun := equiv.ulift.to_fun, inv_fun := equiv.ulift.inv_fun, left_inv := _, right_inv := _}, continuous_to_fun := _, continuous_inv_fun := _}
def
homeomorph.sum_prod_distrib
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[topological_space α]
[topological_space β]
[topological_space γ] :
(α ⊕ β) × γ
is homeomorphic to α × γ ⊕ β × γ
.
Equations
- homeomorph.sum_prod_distrib = (homeomorph.homeomorph_of_continuous_open (equiv.sum_prod_distrib α β γ).symm homeomorph.sum_prod_distrib._proof_1 homeomorph.sum_prod_distrib._proof_2).symm
def
homeomorph.prod_sum_distrib
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[topological_space α]
[topological_space β]
[topological_space γ] :
α × (β ⊕ γ)
is homeomorphic to α × β ⊕ α × γ
.
Equations
- homeomorph.prod_sum_distrib = (homeomorph.prod_comm α (β ⊕ γ)).trans (homeomorph.sum_prod_distrib.trans ((homeomorph.prod_comm β α).sum_congr (homeomorph.prod_comm γ α)))
def
homeomorph.sigma_prod_distrib
{β : Type u_2}
[topological_space β]
{ι : Type u_5}
{σ : ι → Type u_6}
[Π (i : ι), topological_space (σ i)] :
(Σ i, σ i) × β
is homeomorphic to Σ i, (σ i × β)
.
Equations
- homeomorph.sigma_prod_distrib = (homeomorph.homeomorph_of_continuous_open (equiv.sigma_prod_distrib σ β).symm homeomorph.sigma_prod_distrib._proof_1 homeomorph.sigma_prod_distrib._proof_2).symm