mathlib documentation

linear_algebra.​direct_sum.​finsupp

linear_algebra.​direct_sum.​finsupp

Results on direct sums and finitely supported functions.

  1. The linear equivalence between finitely supported functions ι →₀ M and the direct sum of copies of M indexed by ι.

  2. The tensor product of ι →₀ M and κ →₀ N is linearly equivalent to (ι × κ) →₀ (M ⊗ N).

def finsupp_lequiv_direct_sum (R : Type u) (M : Type v) [ring R] [add_comm_group M] [module R M] (ι : Type u_1) [decidable_eq ι] :
→₀ M) ≃ₗ[R] direct_sum ι (λ (i : ι), M)

The finitely supported functions ι →₀ M are in linear equivalence with the direct sum of copies of M indexed by ι.

Equations
@[simp]
theorem finsupp_lequiv_direct_sum_single (R : Type u) (M : Type v) [ring R] [add_comm_group M] [module R M] (ι : Type u_1) [decidable_eq ι] (i : ι) (m : M) :
(finsupp_lequiv_direct_sum R M ι) (finsupp.single i m) = (direct_sum.lof R ι (λ (i : ι), M) i) m

@[simp]
theorem finsupp_lequiv_direct_sum_symm_lof (R : Type u) (M : Type v) [ring R] [add_comm_group M] [module R M] (ι : Type u_1) [decidable_eq ι] (i : ι) (m : M) :
((finsupp_lequiv_direct_sum R M ι).symm) ((direct_sum.lof R ι (λ (i : ι), M) i) m) = finsupp.single i m

def finsupp_tensor_finsupp (R : Type u_1) (M : Type u_2) (N : Type u_3) (ι : Type u_4) (κ : Type u_5) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] :

The tensor product of ι →₀ M and κ →₀ N is linearly equivalent to (ι × κ) →₀ (M ⊗ N).

Equations
@[simp]
theorem finsupp_tensor_finsupp_single (R : Type u_1) (M : Type u_2) (N : Type u_3) (ι : Type u_4) (κ : Type u_5) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] (i : ι) (m : M) (k : κ) (n : N) :

@[simp]
theorem finsupp_tensor_finsupp_symm_single (R : Type u_1) (M : Type u_2) (N : Type u_3) (ι : Type u_4) (κ : Type u_5) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] (i : ι × κ) (m : M) (n : N) :