mathlib documentation

data.​multiset.​finset_ops

data.​multiset.​finset_ops

Preparations for defining operations on finset.

The operations here ignore multiplicities, and preparatory for defining the corresponding operations on finset.

finset insert

def multiset.​ndinsert {α : Type u_1} [decidable_eq α] :
α → multiset αmultiset α

ndinsert a s is the lift of the list insert operation. This operation does not respect multiplicities, unlike cons, but it is suitable as an insert operation on finset.

Equations
@[simp]
theorem multiset.​coe_ndinsert {α : Type u_1} [decidable_eq α] (a : α) (l : list α) :

@[simp]
theorem multiset.​ndinsert_zero {α : Type u_1} [decidable_eq α] (a : α) :

@[simp]
theorem multiset.​ndinsert_of_mem {α : Type u_1} [decidable_eq α] {a : α} {s : multiset α} :
a smultiset.ndinsert a s = s

@[simp]
theorem multiset.​ndinsert_of_not_mem {α : Type u_1} [decidable_eq α] {a : α} {s : multiset α} :
a smultiset.ndinsert a s = a :: s

@[simp]
theorem multiset.​mem_ndinsert {α : Type u_1} [decidable_eq α] {a b : α} {s : multiset α} :

@[simp]
theorem multiset.​le_ndinsert_self {α : Type u_1} [decidable_eq α] (a : α) (s : multiset α) :

@[simp]
theorem multiset.​mem_ndinsert_self {α : Type u_1} [decidable_eq α] (a : α) (s : multiset α) :

theorem multiset.​mem_ndinsert_of_mem {α : Type u_1} [decidable_eq α] {a b : α} {s : multiset α} :
a sa multiset.ndinsert b s

@[simp]
theorem multiset.​length_ndinsert_of_mem {α : Type u_1} [decidable_eq α] {a : α} {s : multiset α} :
a s(multiset.ndinsert a s).card = s.card

@[simp]
theorem multiset.​length_ndinsert_of_not_mem {α : Type u_1} [decidable_eq α] {a : α} {s : multiset α} :
a s(multiset.ndinsert a s).card = s.card + 1

theorem multiset.​erase_dup_cons {α : Type u_1} [decidable_eq α] {a : α} {s : multiset α} :

theorem multiset.​nodup_ndinsert {α : Type u_1} [decidable_eq α] (a : α) {s : multiset α} :

theorem multiset.​ndinsert_le {α : Type u_1} [decidable_eq α] {a : α} {s t : multiset α} :

theorem multiset.​attach_ndinsert {α : Type u_1} [decidable_eq α] (a : α) (s : multiset α) :
(multiset.ndinsert a s).attach = multiset.ndinsert a, _⟩ (multiset.map (λ (p : {x // x s}), p.val, _⟩) s.attach)

@[simp]
theorem multiset.​disjoint_ndinsert_left {α : Type u_1} [decidable_eq α] {a : α} {s t : multiset α} :

@[simp]
theorem multiset.​disjoint_ndinsert_right {α : Type u_1} [decidable_eq α] {a : α} {s t : multiset α} :

finset union

def multiset.​ndunion {α : Type u_1} [decidable_eq α] :
multiset αmultiset αmultiset α

ndunion s t is the lift of the list union operation. This operation does not respect multiplicities, unlike s ∪ t, but it is suitable as a union operation on finset. (s ∪ t would also work as a union operation on finset, but this is more efficient.)

Equations
@[simp]
theorem multiset.​coe_ndunion {α : Type u_1} [decidable_eq α] (l₁ l₂ : list α) :
l₁.ndunion l₂ = (l₁ l₂)

@[simp]
theorem multiset.​zero_ndunion {α : Type u_1} [decidable_eq α] (s : multiset α) :
0.ndunion s = s

@[simp]
theorem multiset.​cons_ndunion {α : Type u_1} [decidable_eq α] (s t : multiset α) (a : α) :

@[simp]
theorem multiset.​mem_ndunion {α : Type u_1} [decidable_eq α] {s t : multiset α} {a : α} :
a s.ndunion t a s a t

theorem multiset.​le_ndunion_right {α : Type u_1} [decidable_eq α] (s t : multiset α) :
t s.ndunion t

theorem multiset.​subset_ndunion_right {α : Type u_1} [decidable_eq α] (s t : multiset α) :
t s.ndunion t

theorem multiset.​ndunion_le_add {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s.ndunion t s + t

theorem multiset.​ndunion_le {α : Type u_1} [decidable_eq α] {s t u : multiset α} :
s.ndunion t u s u t u

theorem multiset.​subset_ndunion_left {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s s.ndunion t

theorem multiset.​le_ndunion_left {α : Type u_1} [decidable_eq α] {s : multiset α} (t : multiset α) :
s.nodups s.ndunion t

theorem multiset.​ndunion_le_union {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s.ndunion t s t

theorem multiset.​nodup_ndunion {α : Type u_1} [decidable_eq α] (s : multiset α) {t : multiset α} :
t.nodup(s.ndunion t).nodup

@[simp]
theorem multiset.​ndunion_eq_union {α : Type u_1} [decidable_eq α] {s t : multiset α} :
s.nodups.ndunion t = s t

theorem multiset.​erase_dup_add {α : Type u_1} [decidable_eq α] (s t : multiset α) :

finset inter

def multiset.​ndinter {α : Type u_1} [decidable_eq α] :
multiset αmultiset αmultiset α

ndinter s t is the lift of the list operation. This operation does not respect multiplicities, unlike s ∩ t, but it is suitable as an intersection operation on finset. (s ∩ t would also work as a union operation on finset, but this is more efficient.)

Equations
@[simp]
theorem multiset.​coe_ndinter {α : Type u_1} [decidable_eq α] (l₁ l₂ : list α) :
l₁.ndinter l₂ = (l₁ l₂)

@[simp]
theorem multiset.​zero_ndinter {α : Type u_1} [decidable_eq α] (s : multiset α) :
0.ndinter s = 0

@[simp]
theorem multiset.​cons_ndinter_of_mem {α : Type u_1} [decidable_eq α] {a : α} (s : multiset α) {t : multiset α} :
a t(a :: s).ndinter t = a :: s.ndinter t

@[simp]
theorem multiset.​ndinter_cons_of_not_mem {α : Type u_1} [decidable_eq α] {a : α} (s : multiset α) {t : multiset α} :
a t(a :: s).ndinter t = s.ndinter t

@[simp]
theorem multiset.​mem_ndinter {α : Type u_1} [decidable_eq α] {s t : multiset α} {a : α} :
a s.ndinter t a s a t

@[simp]
theorem multiset.​nodup_ndinter {α : Type u_1} [decidable_eq α] {s : multiset α} (t : multiset α) :
s.nodup(s.ndinter t).nodup

theorem multiset.​le_ndinter {α : Type u_1} [decidable_eq α] {s t u : multiset α} :
s t.ndinter u s t s u

theorem multiset.​ndinter_le_left {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s.ndinter t s

theorem multiset.​ndinter_subset_left {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s.ndinter t s

theorem multiset.​ndinter_subset_right {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s.ndinter t t

theorem multiset.​ndinter_le_right {α : Type u_1} [decidable_eq α] {s : multiset α} (t : multiset α) :
s.nodups.ndinter t t

theorem multiset.​inter_le_ndinter {α : Type u_1} [decidable_eq α] (s t : multiset α) :
s t s.ndinter t

@[simp]
theorem multiset.​ndinter_eq_inter {α : Type u_1} [decidable_eq α] {s t : multiset α} :
s.nodups.ndinter t = s t

theorem multiset.​ndinter_eq_zero_iff_disjoint {α : Type u_1} [decidable_eq α] {s t : multiset α} :
s.ndinter t = 0 s.disjoint t