mathlib documentation

data.​real.​pi

data.​real.​pi

theorem real.​pi_lower_bound_start (n : ) {a : } :
(0 / 1).sqrt_two_add_series n 2 - (a / 2 ^ (n + 1)) ^ 2a < real.pi

From an upper bound on sqrt_two_add_series 0 n = 2 cos (pi / 2 ^ (n+1)) of the form sqrt_two_add_series 0 n ≤ 2 - (a / 2 ^ (n + 1)) ^ 2), one can deduce the lower bound a < pi thanks to basic trigonometric inequalities as expressed in pi_gt_sqrt_two_add_series.

theorem real.​sqrt_two_add_series_step_up (c d : ) {a b n : } {z : } :
(c / d).sqrt_two_add_series n z0 < b0 < d(2 * b + a) * d ^ 2 c ^ 2 * b(a / b).sqrt_two_add_series (n + 1) z

Create a proof of a < pi for a fixed rational number a, given a witness, which is a sequence of rational numbers sqrt 2 < r 1 < r 2 < ... < r n < 2 satisfying the property that sqrt (2 + r i) ≤ r(i+1), where r 0 = 0 and sqrt (2 - r n) ≥ a/2^(n+1).

theorem real.​pi_upper_bound_start (n : ) {a : } :
2 - ((a - 1 / 4 ^ n) / 2 ^ (n + 1)) ^ 2 (0 / 1).sqrt_two_add_series n1 / 4 ^ n areal.pi < a

From a lower bound on sqrt_two_add_series 0 n = 2 cos (pi / 2 ^ (n+1)) of the form 2 - ((a - 1 / 4 ^ n) / 2 ^ (n + 1)) ^ 2 ≤ sqrt_two_add_series 0 n, one can deduce the upper bound pi < a thanks to basic trigonometric formulas as expressed in pi_lt_sqrt_two_add_series.

theorem real.​sqrt_two_add_series_step_down (a b : ) {c d n : } {z : } :
z (a / b).sqrt_two_add_series n0 < b0 < da ^ 2 * d (2 * d + c) * b ^ 2z (c / d).sqrt_two_add_series (n + 1)

Create a proof of pi < a for a fixed rational number a, given a witness, which is a sequence of rational numbers sqrt 2 < r 1 < r 2 < ... < r n < 2 satisfying the property that sqrt (2 + r i) ≥ r(i+1), where r 0 = 0 and sqrt (2 - r n) ≥ (a - 1/4^n) / 2^(n+1).

theorem real.​pi_gt_314  :
157 / 50 < real.pi

theorem real.​pi_lt_315  :
real.pi < 63 / 20

theorem real.​pi_gt_31415  :
6283 / 2000 < real.pi

theorem real.​pi_lt_31416  :
real.pi < 3927 / 1250

theorem real.​pi_gt_3141592  :
392699 / 125000 < real.pi

theorem real.​pi_lt_3141593  :
real.pi < 3141593 / 1000000