mathlib documentation

algebra.​module.​prod

algebra.​module.​prod

Prod instances for module and multiplicative actions

This file defines instances for binary product of modules

@[instance]
def prod.​has_scalar {α : Type u_1} {β : Type u_2} {γ : Type u_3} [has_scalar α β] [has_scalar α γ] :
has_scalar α × γ)

Equations
@[simp]
theorem prod.​smul_fst {α : Type u_1} {β : Type u_2} {γ : Type u_3} [has_scalar α β] [has_scalar α γ] (a : α) (x : β × γ) :
(a x).fst = a x.fst

@[simp]
theorem prod.​smul_snd {α : Type u_1} {β : Type u_2} {γ : Type u_3} [has_scalar α β] [has_scalar α γ] (a : α) (x : β × γ) :
(a x).snd = a x.snd

@[simp]
theorem prod.​smul_mk {α : Type u_1} {β : Type u_2} {γ : Type u_3} [has_scalar α β] [has_scalar α γ] (a : α) (b : β) (c : γ) :
a (b, c) = (a b, a c)

@[instance]
def prod.​semimodule {α : Type u_1} {β : Type u_2} {γ : Type u_3} {r : semiring α} [add_comm_monoid β] [add_comm_monoid γ] [semimodule α β] [semimodule α γ] :
semimodule α × γ)

Equations