mathlib documentation

algebra.​group.​hom

algebra.​group.​hom

monoid and group homomorphisms

This file defines the bundled structures for monoid and group homomorphisms. Namely, we define monoid_hom (resp., add_monoid_hom) to be bundled homomorphisms between multiplicative (resp., additive) monoids or groups.

We also define coercion to a function, and usual operations: composition, identity homomorphism, pointwise multiplication and pointwise inversion.

Notations

implementation notes

There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion.

There is no group_hom -- the idea is that monoid_hom is used. The constructor for monoid_hom needs a proof of map_one as well as map_mul; a separate constructor monoid_hom.mk' will construct group homs (i.e. monoid homs between groups) given only a proof that multiplication is preserved,

Implicit {} brackets are often used instead of type class [] brackets. This is done when the instances can be inferred because they are implicit arguments to the type monoid_hom. When they can be inferred from the type it is faster to use this method than to use type class inference.

Historically this file also included definitions of unbundled homomorphism classes; they were deprecated and moved to deprecated/group.

Tags

monoid_hom, add_monoid_hom

structure add_monoid_hom (M : Type u_6) (N : Type u_7) [add_monoid M] [add_monoid N] :
Type (max u_6 u_7)

Bundled add_monoid homomorphisms; use this for bundled add_group homomorphisms too.

structure monoid_hom (M : Type u_6) (N : Type u_7) [monoid M] [monoid N] :
Type (max u_6 u_7)

Bundled monoid homomorphisms; use this for bundled group homomorphisms too.

@[instance]
def monoid_hom.​has_coe_to_fun {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} :

Equations
@[instance]
def add_monoid_hom.​has_coe_to_fun {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} :

@[simp]
theorem monoid_hom.​to_fun_eq_coe {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) :

@[simp]
theorem add_monoid_hom.​to_fun_eq_coe {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) :

@[simp]
theorem monoid_hom.​coe_mk {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M → N) (h1 : f 1 = 1) (hmul : ∀ (x y : M), f (x * y) = f x * f y) :
{to_fun := f, map_one' := h1, map_mul' := hmul} = f

@[simp]
theorem add_monoid_hom.​coe_mk {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M → N) (h1 : f 0 = 0) (hmul : ∀ (x y : M), f (x + y) = f x + f y) :
{to_fun := f, map_zero' := h1, map_add' := hmul} = f

theorem monoid_hom.​coe_inj {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} ⦃f g : M →* N⦄ :
f = gf = g

theorem add_monoid_hom.​coe_inj {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} ⦃f g : M →+ N⦄ :
f = gf = g

@[ext]
theorem monoid_hom.​ext {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} ⦃f g : M →* N⦄ :
(∀ (x : M), f x = g x)f = g

@[ext]
theorem add_monoid_hom.​ext {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} ⦃f g : M →+ N⦄ :
(∀ (x : M), f x = g x)f = g

theorem add_monoid_hom.​ext_iff {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} {f g : M →+ N} :
f = g ∀ (x : M), f x = g x

theorem monoid_hom.​ext_iff {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} {f g : M →* N} :
f = g ∀ (x : M), f x = g x

@[simp]
theorem monoid_hom.​map_one {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) :
f 1 = 1

If f is a monoid homomorphism then f 1 = 1.

@[simp]
theorem add_monoid_hom.​map_zero {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) :
f 0 = 0

If f is an additive monoid homomorphism then f 0 = 0.

@[simp]
theorem monoid_hom.​map_mul {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) (a b : M) :
f (a * b) = f a * f b

If f is a monoid homomorphism then f (a * b) = f a * f b.

@[simp]
theorem add_monoid_hom.​map_add {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) (a b : M) :
f (a + b) = f a + f b

If f is an additive monoid homomorphism then f (a + b) = f a + f b.

theorem add_monoid_hom.​map_add_eq_zero {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) {a b : M} :
a + b = 0f a + f b = 0

theorem monoid_hom.​map_mul_eq_one {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) {a b : M} :
a * b = 1f a * f b = 1

theorem monoid_hom.​map_exists_right_inv {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) {x : M} :
(∃ (y : M), x * y = 1)(∃ (y : N), f x * y = 1)

Given a monoid homomorphism f : M →* N and an element x : M, if x has a right inverse, then f x has a right inverse too. For elements invertible on both sides see is_unit.map.

theorem add_monoid_hom.​map_exists_right_neg {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) {x : M} :
(∃ (y : M), x + y = 0)(∃ (y : N), f x + y = 0)

Given an add_monoid homomorphism f : M →+ N and an element x : M, if x has a right inverse, then f x has a right inverse too.

theorem add_monoid_hom.​map_exists_left_neg {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) {x : M} :
(∃ (y : M), y + x = 0)(∃ (y : N), y + f x = 0)

Given an add_monoid homomorphism f : M →+ N and an element x : M, if x has a left inverse, then f x has a left inverse too. For elements invertible on both sides see is_add_unit.map.

theorem monoid_hom.​map_exists_left_inv {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) {x : M} :
(∃ (y : M), y * x = 1)(∃ (y : N), y * f x = 1)

Given a monoid homomorphism f : M →* N and an element x : M, if x has a left inverse, then f x has a left inverse too. For elements invertible on both sides see is_unit.map.

def monoid_hom.​id (M : Type u_1) [monoid M] :
M →* M

The identity map from a monoid to itself.

Equations
def add_monoid_hom.​id (M : Type u_1) [add_monoid M] :
M →+ M

The identity map from an additive monoid to itself.

@[simp]
theorem add_monoid_hom.​id_apply {M : Type u_1} [add_monoid M] (x : M) :

@[simp]
theorem monoid_hom.​id_apply {M : Type u_1} [monoid M] (x : M) :

def add_monoid_hom.​comp {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_monoid P} :
(N →+ P)(M →+ N)M →+ P

Composition of additive monoid morphisms as an additive monoid morphism.

def monoid_hom.​comp {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : monoid P} :
(N →* P)(M →* N)M →* P

Composition of monoid morphisms as a monoid morphism.

Equations
@[simp]
theorem add_monoid_hom.​comp_apply {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_monoid P} (g : N →+ P) (f : M →+ N) (x : M) :
(g.comp f) x = g (f x)

@[simp]
theorem monoid_hom.​comp_apply {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : monoid P} (g : N →* P) (f : M →* N) (x : M) :
(g.comp f) x = g (f x)

theorem monoid_hom.​comp_assoc {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : monoid P} {Q : Type u_4} [monoid Q] (f : M →* N) (g : N →* P) (h : P →* Q) :
(h.comp g).comp f = h.comp (g.comp f)

Composition of monoid homomorphisms is associative.

theorem add_monoid_hom.​comp_assoc {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_monoid P} {Q : Type u_4} [add_monoid Q] (f : M →+ N) (g : N →+ P) (h : P →+ Q) :
(h.comp g).comp f = h.comp (g.comp f)

theorem monoid_hom.​cancel_right {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : monoid P} {g₁ g₂ : N →* P} {f : M →* N} :
function.surjective f(g₁.comp f = g₂.comp f g₁ = g₂)

theorem add_monoid_hom.​cancel_right {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_monoid P} {g₁ g₂ : N →+ P} {f : M →+ N} :
function.surjective f(g₁.comp f = g₂.comp f g₁ = g₂)

theorem add_monoid_hom.​cancel_left {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_monoid P} {g : N →+ P} {f₁ f₂ : M →+ N} :
function.injective g(g.comp f₁ = g.comp f₂ f₁ = f₂)

theorem monoid_hom.​cancel_left {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : monoid P} {g : N →* P} {f₁ f₂ : M →* N} :
function.injective g(g.comp f₁ = g.comp f₂ f₁ = f₂)

@[simp]
theorem add_monoid_hom.​comp_id {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) :

@[simp]
theorem monoid_hom.​comp_id {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) :

@[simp]
theorem add_monoid_hom.​id_comp {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_monoid N} (f : M →+ N) :

@[simp]
theorem monoid_hom.​id_comp {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : monoid N} (f : M →* N) :

def monoid.​End (M : Type u_1) [monoid M] :
Type u_1

The monoid of endomorphisms.

Equations
@[instance]
def monoid.​End.​monoid (M : Type u_1) [monoid M] :

Equations
@[instance]
def monoid.​End.​inhabited (M : Type u_1) [monoid M] :

Equations
@[instance]

Equations
@[simp]
theorem monoid.​coe_one (M : Type u_1) [monoid M] :

@[simp]
theorem monoid.​coe_mul (M : Type u_1) [monoid M] (f g : monoid.End M) :
(f * g) = f g

def add_monoid.​End (A : Type u_6) [add_monoid A] :
Type u_6

The monoid of endomorphisms.

Equations
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
@[simp]
theorem add_monoid.​coe_one (A : Type u_6) [add_monoid A] :

@[simp]
theorem add_monoid.​coe_mul (A : Type u_6) [add_monoid A] (f g : add_monoid.End A) :
(f * g) = f g

@[instance]
def add_monoid_hom.​has_zero {M : Type u_1} {N : Type u_2} [mM : add_monoid M] [mN : add_monoid N] :

0 is the additive monoid homomorphism sending all elements to 0.

@[instance]
def monoid_hom.​has_one {M : Type u_1} {N : Type u_2} [mM : monoid M] [mN : monoid N] :

1 is the monoid homomorphism sending all elements to 1.

Equations
@[simp]
theorem monoid_hom.​one_apply {M : Type u_1} {N : Type u_2} [mM : monoid M] [mN : monoid N] (x : M) :
1 x = 1

@[simp]
theorem add_monoid_hom.​zero_apply {M : Type u_1} {N : Type u_2} [mM : add_monoid M] [mN : add_monoid N] (x : M) :
0 x = 0

@[instance]
def monoid_hom.​inhabited {M : Type u_1} {N : Type u_2} [mM : monoid M] [mN : monoid N] :

Equations
@[instance]
def add_monoid_hom.​inhabited {M : Type u_1} {N : Type u_2} [mM : add_monoid M] [mN : add_monoid N] :

@[instance]
def monoid_hom.​has_mul {M : Type u_1} {N : Type u_2} {mM : monoid M} [comm_monoid N] :

Given two monoid morphisms f, g to a commutative monoid, f * g is the monoid morphism sending x to f x * g x.

Equations
@[instance]
def add_monoid_hom.​has_add {M : Type u_1} {N : Type u_2} {mM : add_monoid M} [add_comm_monoid N] :

Given two additive monoid morphisms f, g to an additive commutative monoid, f + g is the additive monoid morphism sending x to f x + g x.

@[simp]
theorem add_monoid_hom.​add_apply {M : Type u_1} {N : Type u_2} {mM : add_monoid M} {mN : add_comm_monoid N} (f g : M →+ N) (x : M) :
(f + g) x = f x + g x

@[simp]
theorem monoid_hom.​mul_apply {M : Type u_1} {N : Type u_2} {mM : monoid M} {mN : comm_monoid N} (f g : M →* N) (x : M) :
(f * g) x = f x * g x

@[instance]
def monoid_hom.​comm_monoid {M : Type u_1} {N : Type u_2} [monoid M] [comm_monoid N] :

(M →* N) is a comm_monoid if N is commutative.

Equations
@[instance]
def add_monoid_hom.​add_comm_monoid {M : Type u_1} {N : Type u_2} [add_monoid M] [add_comm_monoid N] :

def add_monoid_hom.​flip {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_comm_monoid P} :
(M →+ N →+ P)N →+ M →+ P

flip arguments of f : M →+ N →+ P

def monoid_hom.​flip {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : comm_monoid P} :
(M →* N →* P)N →* M →* P

flip arguments of f : M →* N →* P

Equations
@[simp]
theorem monoid_hom.​flip_apply {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : monoid M} {mN : monoid N} {mP : comm_monoid P} (f : M →* N →* P) (x : M) (y : N) :
((f.flip) y) x = (f x) y

@[simp]
theorem add_monoid_hom.​flip_apply {M : Type u_1} {N : Type u_2} {P : Type u_3} {mM : add_monoid M} {mN : add_monoid N} {mP : add_comm_monoid P} (f : M →+ N →+ P) (x : M) (y : N) :
((f.flip) y) x = (f x) y

theorem add_monoid_hom.​eq_on_neg {M : Type u_1} {G : Type u_2} [add_group G] [add_monoid M] {f g : G →+ M} {x : G} :
f x = g xf (-x) = g (-x)

If two homomorphism from an additive group to an additive monoid are equal at x, then they are equal at -x.

theorem monoid_hom.​eq_on_inv {M : Type u_1} {G : Type u_2} [group G] [monoid M] {f g : G →* M} {x : G} :
f x = g xf x⁻¹ = g x⁻¹

If two homomorphism from a group to a monoid are equal at x, then they are equal at x⁻¹.

@[simp]
theorem add_monoid_hom.​map_neg {G : Type u_1} {H : Type u_2} [add_group G] [add_group H] (f : G →+ H) (g : G) :
f (-g) = -f g

@[simp]
theorem monoid_hom.​map_inv {G : Type u_1} {H : Type u_2} [group G] [group H] (f : G →* H) (g : G) :

Group homomorphisms preserve inverse.

@[simp]
theorem add_monoid_hom.​map_add_neg {G : Type u_1} {H : Type u_2} [add_group G] [add_group H] (f : G →+ H) (g h : G) :
f (g + -h) = f g + -f h

@[simp]
theorem monoid_hom.​map_mul_inv {G : Type u_1} {H : Type u_2} [group G] [group H] (f : G →* H) (g h : G) :
f (g * h⁻¹) = f g * (f h)⁻¹

Group homomorphisms preserve division.

theorem monoid_hom.​injective_iff {G : Type u_1} {H : Type u_2} [group G] [monoid H] (f : G →* H) :
function.injective f ∀ (a : G), f a = 1a = 1

A homomorphism from a group to a monoid is injective iff its kernel is trivial.

theorem add_monoid_hom.​injective_iff {G : Type u_1} {H : Type u_2} [add_group G] [add_monoid H] (f : G →+ H) :
function.injective f ∀ (a : G), f a = 0a = 0

def add_monoid_hom.​mk' {M : Type u_1} {G : Type u_4} [mM : add_monoid M] [add_group G] (f : M → G) :
(∀ (a b : M), f (a + b) = f a + f b)M →+ G

Makes an additive group homomomorphism from a proof that the map preserves multiplication.

def monoid_hom.​mk' {M : Type u_1} {G : Type u_4} [mM : monoid M] [group G] (f : M → G) :
(∀ (a b : M), f (a * b) = f a * f b)M →* G

Makes a group homomomorphism from a proof that the map preserves multiplication.

Equations
@[simp]
theorem monoid_hom.​coe_mk' {M : Type u_1} {G : Type u_4} [mM : monoid M] [group G] {f : M → G} (map_mul : ∀ (a b : M), f (a * b) = f a * f b) :
(monoid_hom.mk' f map_mul) = f

@[simp]
theorem add_monoid_hom.​coe_mk' {M : Type u_1} {G : Type u_4} [mM : add_monoid M] [add_group G] {f : M → G} (map_mul : ∀ (a b : M), f (a + b) = f a + f b) :
(add_monoid_hom.mk' f map_mul) = f

@[instance]
def monoid_hom.​has_inv {M : Type u_1} {G : Type u_2} [monoid M] [comm_group G] :

If f is a monoid homomorphism to a commutative group, then f⁻¹ is the homomorphism sending x to (f x)⁻¹.

Equations
@[instance]
def add_monoid_hom.​has_neg {M : Type u_1} {G : Type u_2} [add_monoid M] [add_comm_group G] :

If f is an additive monoid homomorphism to an additive commutative group, then -f is the homomorphism sending x to -(f x).

@[simp]
theorem add_monoid_hom.​neg_apply {M : Type u_1} {G : Type u_2} {mM : add_monoid M} {gG : add_comm_group G} (f : M →+ G) (x : M) :
(-f) x = -f x

@[simp]
theorem monoid_hom.​inv_apply {M : Type u_1} {G : Type u_2} {mM : monoid M} {gG : comm_group G} (f : M →* G) (x : M) :

@[instance]
def add_monoid_hom.​add_comm_group {M : Type u_1} {G : Type u_2} [add_monoid M] [add_comm_group G] :

If G is an additive commutative group, then M →+ G an additive commutative group too.

@[instance]
def monoid_hom.​comm_group {M : Type u_1} {G : Type u_2} [monoid M] [comm_group G] :

If G is a commutative group, then M →* G a commutative group too.

Equations
@[simp]
theorem add_monoid_hom.​map_sub {G : Type u_1} {H : Type u_2} [add_group G] [add_group H] (f : G →+ H) (g h : G) :
f (g - h) = f g - f h

Additive group homomorphisms preserve subtraction.

@[simp]
theorem semiconj_by.​map {M : Type u_1} {N : Type u_2} [monoid M] [monoid N] {a x y : M} (h : semiconj_by a x y) (f : M →* N) :
semiconj_by (f a) (f x) (f y)

@[simp]
theorem add_semiconj_by.​map {M : Type u_1} {N : Type u_2} [add_monoid M] [add_monoid N] {a x y : M} (h : add_semiconj_by a x y) (f : M →+ N) :
add_semiconj_by (f a) (f x) (f y)

@[simp]
theorem commute.​map {M : Type u_1} {N : Type u_2} [monoid M] [monoid N] {x y : M} (h : commute x y) (f : M →* N) :
commute (f x) (f y)

@[simp]
theorem add_commute.​map {M : Type u_1} {N : Type u_2} [add_monoid M] [add_monoid N] {x y : M} (h : add_commute x y) (f : M →+ N) :
add_commute (f x) (f y)