Equivariant homomorphisms
Main definitions
mul_action_hom M X Y
, the type of equivariant functions fromX
toY
, whereM
is a monoid that acts on the typesX
andY
.distrib_mul_action_hom M A B
, the type of equivariant additive monoid homomorphisms fromA
toB
, whereM
is a monoid that acts on the additive monoidsA
andB
.mul_semiring_action_hom M R S
, the type of equivariant ring homomorphisms fromR
toS
, whereM
is a monoid that acts on the ringsR
andS
.
Notations
X →[M] Y
ismul_action_hom M X Y
.A →+[M] B
isdistrib_mul_action_hom M X Y
.R →+*[M] S
ismul_semiring_action_hom M X Y
.
Equivariant functions.
The identity map as an equivariant map.
Composition of two equivariant maps.
The canonical map to the left cosets.
Equations
- mul_action_hom.to_quotient H = {to_fun := coe coe_to_lift, map_smul' := _}
- to_fun : A → B
- map_smul' : ∀ (m : M) (x : A), c.to_fun (m • x) = m • c.to_fun x
- map_zero' : c.to_fun 0 = 0
- map_add' : ∀ (x y : A), c.to_fun (x + y) = c.to_fun x + c.to_fun y
Equivariant additive monoid homomorphisms.
Reinterpret an equivariant additive monoid homomorphism as an equivariant function.
Reinterpret an equivariant additive monoid homomorphism as an additive monoid homomorphism.
Equations
- distrib_mul_action_hom.has_coe M A B = {coe := distrib_mul_action_hom.to_add_monoid_hom _inst_10}
Equations
- distrib_mul_action_hom.has_coe' M A B = {coe := distrib_mul_action_hom.to_mul_action_hom _inst_10}
The identity map as an equivariant additive monoid homomorphism.
Composition of two equivariant additive monoid homomorphisms.
Reinterpret an equivariant ring homomorphism as an equivariant additive monoid homomorphism.
- to_fun : R → S
- map_smul' : ∀ (m : M) (x : R), c.to_fun (m • x) = m • c.to_fun x
- map_zero' : c.to_fun 0 = 0
- map_add' : ∀ (x y : R), c.to_fun (x + y) = c.to_fun x + c.to_fun y
- map_one' : c.to_fun 1 = 1
- map_mul' : ∀ (x y : R), c.to_fun (x * y) = c.to_fun x * c.to_fun y
Equivariant ring homomorphisms.
Reinterpret an equivariant ring homomorphism as a ring homomorphism.
Equations
- mul_semiring_action_hom.has_coe M R S = {coe := mul_semiring_action_hom.to_ring_hom _inst_20}
Equations
- mul_semiring_action_hom.has_coe' M R S = {coe := mul_semiring_action_hom.to_distrib_mul_action_hom _inst_20}
The identity map as an equivariant ring homomorphism.
Composition of two equivariant additive monoid homomorphisms.
An equivariant map induces an equivariant map on polynomials.
The canonical inclusion from an invariant subring.