The left coset a*s
corresponding to an element a : α
and a subset s : set α
Equations
- left_coset a s = (λ (x : α), a * x) '' s
The right coset s*a
corresponding to an element a : α
and a subset s : set α
Equations
- right_coset s a = (λ (x : α), x * a) '' s
Equality of two left cosets a*s
and b*s
Equations
- left_coset_equiv s a b = (left_coset a s = left_coset b s)
Equality of two left cosets a+s
and b+s
The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.
The canonical map from a group α
to the quotient α/s
.
Equations
The canonical map from an add_group
α
to the quotient α/s
.
Equations
- quotient_group.inhabited s = {default := ↑1}
The natural bijection between the cosets g+s
and s
The natural bijection between the cosets g*s
and s
A (non-canonical) bijection between a group α
and the product (α/s) × s
Equations
- subgroup.group_equiv_quotient_times_subgroup = (((equiv.sigma_preimage_equiv quotient_group.mk).symm.trans (equiv.sigma_congr_right (λ (L : quotient_group.quotient s), _.mpr (id (_.mpr (equiv.refl {x // quotient.mk' x = L})))))).trans (equiv.sigma_congr_right (λ (L : quotient_group.quotient s), subgroup.left_coset_equiv_subgroup (quotient.out' L)))).trans (equiv.sigma_equiv_prod (quotient_group.quotient s) ↥s)
A (non-canonical) bijection between an add_group α
and the product (α/s) × s
If s
is a subgroup of the group α
, and t
is a subset of α/s
, then
there is a (typically non-canonical) bijection between the preimage of t
in
α
and the product s × t
.
Equations
- quotient_group.preimage_mk_equiv_subgroup_times_set s t = have h : ∀ {x : quotient_group.quotient s} {a : α}, x ∈ t → a ∈ s → quotient.mk' (quotient.out' x * a) = quotient.mk' (quotient.out' x), from _, {to_fun := λ (_x : ↥(quotient_group.mk ⁻¹' t)), quotient_group.preimage_mk_equiv_subgroup_times_set._match_1 s t _x, inv_fun := λ (_x : ↥s × ↥t), quotient_group.preimage_mk_equiv_subgroup_times_set._match_2 s t h _x, left_inv := _, right_inv := _}
- quotient_group.preimage_mk_equiv_subgroup_times_set._match_1 s t ⟨a, ha⟩ = (⟨((quotient.mk' a).out')⁻¹ * a, _⟩, ⟨quotient.mk' a, ha⟩)
- quotient_group.preimage_mk_equiv_subgroup_times_set._match_2 s t h (⟨a, ha⟩, ⟨x, hx⟩) = ⟨quotient.out' x * a, _⟩