@[simp]
    
theorem
category_theory.bifunctor.map_id
    {C : Type u₁}
    {D : Type u₂}
    {E : Type u₃}
    [category_theory.category C]
    [category_theory.category D]
    [category_theory.category E]
    (F : C × D ⥤ E)
    (X : C)
    (Y : D) :
@[simp]
    
theorem
category_theory.bifunctor.map_id_comp
    {C : Type u₁}
    {D : Type u₂}
    {E : Type u₃}
    [category_theory.category C]
    [category_theory.category D]
    [category_theory.category E]
    (F : C × D ⥤ E)
    (W : C)
    {X Y Z : D}
    (f : X ⟶ Y)
    (g : Y ⟶ Z) :
@[simp]
    
theorem
category_theory.bifunctor.map_comp_id
    {C : Type u₁}
    {D : Type u₂}
    {E : Type u₃}
    [category_theory.category C]
    [category_theory.category D]
    [category_theory.category E]
    (F : C × D ⥤ E)
    (X Y Z : C)
    (W : D)
    (f : X ⟶ Y)
    (g : Y ⟶ Z) :
@[simp]
    
theorem
category_theory.bifunctor.diagonal
    {C : Type u₁}
    {D : Type u₂}
    {E : Type u₃}
    [category_theory.category C]
    [category_theory.category D]
    [category_theory.category E]
    (F : C × D ⥤ E)
    (X X' : C)
    (f : X ⟶ X')
    (Y Y' : D)
    (g : Y ⟶ Y') :
@[simp]
    
theorem
category_theory.bifunctor.diagonal'
    {C : Type u₁}
    {D : Type u₂}
    {E : Type u₃}
    [category_theory.category C]
    [category_theory.category D]
    [category_theory.category E]
    (F : C × D ⥤ E)
    (X X' : C)
    (f : X ⟶ X')
    (Y Y' : D)
    (g : Y ⟶ Y') :