mathlib documentation

topology.​sheaves.​presheaf

topology.​sheaves.​presheaf

Presheaves on a topological space

We define presheaf C X simply as (opens X)ᵒᵖ ⥤ C, and inherit the category structure with natural transformations as morphisms.

We define

def Top.​presheaf (C : Type u) [category_theory.category C] :
TopType (max v u)

Equations
def Top.​presheaf.​pushforward {C : Type u} [category_theory.category C] {X Y : Top} :
(X Y)Top.presheaf C XTop.presheaf C Y

Equations
theorem Top.​presheaf.​pushforward_eq_eq {C : Type u} [category_theory.category C] {X Y : Top} {f g : X Y} (h₁ h₂ : f = g) (ℱ : Top.presheaf C X) :

@[simp]

@[simp]

@[simp]
theorem Top.​presheaf.​pushforward.​comp_hom_app {C : Type u} [category_theory.category C] {X : Top} (ℱ : Top.presheaf C X) {Y Z : Top} (f : X Y) (g : Y Z) (U : (topological_space.opens Z)ᵒᵖ) :
(Top.presheaf.pushforward.comp f g).hom.app U = 𝟙 (((f g) _* ℱ).obj U)

@[simp]
theorem Top.​presheaf.​pushforward.​comp_inv_app {C : Type u} [category_theory.category C] {X : Top} (ℱ : Top.presheaf C X) {Y Z : Top} (f : X Y) (g : Y Z) (U : (topological_space.opens Z)ᵒᵖ) :
(Top.presheaf.pushforward.comp f g).inv.app U = 𝟙 ((g _* (f _* ℱ)).obj U)