mathlib documentation

topology.​algebra.​monoid

topology.​algebra.​monoid

@[class]
structure has_continuous_add (α : Type u_4) [topological_space α] [has_add α] :
Prop

Basic hypothesis to talk about a topological additive monoid or a topological additive semigroup. A topological additive monoid over α, for example, is obtained by requiring both the instances add_monoid α and has_continuous_add α.

Instances
@[class]
structure has_continuous_mul (α : Type u_4) [topological_space α] [has_mul α] :
Prop

Basic hypothesis to talk about a topological monoid or a topological semigroup. A topological monoid over α, for example, is obtained by requiring both the instances monoid α and has_continuous_mul α.

Instances
theorem continuous_add {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] :
continuous (λ (p : α × α), p.fst + p.snd)

theorem continuous_mul {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] :
continuous (λ (p : α × α), p.fst * p.snd)

theorem continuous.​add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} :
continuous fcontinuous gcontinuous (λ (x : β), f x + g x)

theorem continuous.​mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} :
continuous fcontinuous gcontinuous (λ (x : β), f x * g x)

theorem continuous_mul_left {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] (a : α) :
continuous (λ (b : α), a * b)

theorem continuous_add_left {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] (a : α) :
continuous (λ (b : α), a + b)

theorem continuous_add_right {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] (a : α) :
continuous (λ (b : α), b + a)

theorem continuous_mul_right {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] (a : α) :
continuous (λ (b : α), b * a)

theorem continuous_on.​add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} {s : set β} :
continuous_on f scontinuous_on g scontinuous_on (λ (x : β), f x + g x) s

theorem continuous_on.​mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} {s : set β} :
continuous_on f scontinuous_on g scontinuous_on (λ (x : β), f x * g x) s

theorem tendsto_mul {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] {a b : α} :
filter.tendsto (λ (p : α × α), p.fst * p.snd) (nhds (a, b)) (nhds (a * b))

theorem tendsto_add {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] {a b : α} :
filter.tendsto (λ (p : α × α), p.fst + p.snd) (nhds (a, b)) (nhds (a + b))

theorem filter.​tendsto.​mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] {f g : β → α} {x : filter β} {a b : α} :
filter.tendsto f x (nhds a)filter.tendsto g x (nhds b)filter.tendsto (λ (x : β), f x * g x) x (nhds (a * b))

theorem filter.​tendsto.​add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] {f g : β → α} {x : filter β} {a b : α} :
filter.tendsto f x (nhds a)filter.tendsto g x (nhds b)filter.tendsto (λ (x : β), f x + g x) x (nhds (a + b))

theorem continuous_at.​add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} {x : β} :
continuous_at f xcontinuous_at g xcontinuous_at (λ (x : β), f x + g x) x

theorem continuous_at.​mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} {x : β} :
continuous_at f xcontinuous_at g xcontinuous_at (λ (x : β), f x * g x) x

theorem continuous_within_at.​add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} {s : set β} {x : β} :
continuous_within_at f s xcontinuous_within_at g s xcontinuous_within_at (λ (x : β), f x + g x) s x

theorem continuous_within_at.​mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} {s : set β} {x : β} :
continuous_within_at f s xcontinuous_within_at g s xcontinuous_within_at (λ (x : β), f x * g x) s x

@[instance]
def prod.​has_continuous_add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] [has_add β] [has_continuous_add β] :

@[instance]
def prod.​has_continuous_mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] [has_mul β] [has_continuous_mul β] :

Equations
theorem tendsto_list_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [monoid α] [has_continuous_mul α] {f : γ → β → α} {x : filter β} {a : γ → α} (l : list γ) :
(∀ (c : γ), c lfilter.tendsto (f c) x (nhds (a c)))filter.tendsto (λ (b : β), (list.map (λ (c : γ), f c b) l).prod) x (nhds (list.map a l).prod)

theorem tendsto_list_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_monoid α] [has_continuous_add α] {f : γ → β → α} {x : filter β} {a : γ → α} (l : list γ) :
(∀ (c : γ), c lfilter.tendsto (f c) x (nhds (a c)))filter.tendsto (λ (b : β), (list.map (λ (c : γ), f c b) l).sum) x (nhds (list.map a l).sum)

theorem continuous_list_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_monoid α] [has_continuous_add α] [topological_space β] {f : γ → β → α} (l : list γ) :
(∀ (c : γ), c lcontinuous (f c))continuous (λ (a : β), (list.map (λ (c : γ), f c a) l).sum)

theorem continuous_list_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [monoid α] [has_continuous_mul α] [topological_space β] {f : γ → β → α} (l : list γ) :
(∀ (c : γ), c lcontinuous (f c))continuous (λ (a : β), (list.map (λ (c : γ), f c a) l).prod)

theorem continuous_pow {α : Type u_1} [topological_space α] [monoid α] [has_continuous_mul α] (n : ) :
continuous (λ (a : α), a ^ n)

theorem continuous.​pow {α : Type u_1} {β : Type u_2} [topological_space α] [monoid α] [has_continuous_mul α] {f : β → α} [topological_space β] (h : continuous f) (n : ) :
continuous (λ (b : β), f b ^ n)

theorem add_submonoid.​mem_nhds_zero {α : Type u_1} [topological_space α] [add_comm_monoid α] (β : add_submonoid α) :
is_open ββ nhds 0

theorem submonoid.​mem_nhds_one {α : Type u_1} [topological_space α] [comm_monoid α] (β : submonoid α) :
is_open ββ nhds 1

theorem tendsto_multiset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : multiset γ) :
(∀ (c : γ), c sfilter.tendsto (f c) x (nhds (a c)))filter.tendsto (λ (b : β), (multiset.map (λ (c : γ), f c b) s).sum) x (nhds (multiset.map a s).sum)

theorem tendsto_multiset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : multiset γ) :
(∀ (c : γ), c sfilter.tendsto (f c) x (nhds (a c)))filter.tendsto (λ (b : β), (multiset.map (λ (c : γ), f c b) s).prod) x (nhds (multiset.map a s).prod)

theorem tendsto_finset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : finset γ) :
(∀ (c : γ), c sfilter.tendsto (f c) x (nhds (a c)))filter.tendsto (λ (b : β), s.sum (λ (c : γ), f c b)) x (nhds (s.sum (λ (c : γ), a c)))

theorem tendsto_finset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : finset γ) :
(∀ (c : γ), c sfilter.tendsto (f c) x (nhds (a c)))filter.tendsto (λ (b : β), s.prod (λ (c : γ), f c b)) x (nhds (s.prod (λ (c : γ), a c)))

theorem continuous_multiset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] [topological_space β] {f : γ → β → α} (s : multiset γ) :
(∀ (c : γ), c scontinuous (f c))continuous (λ (a : β), (multiset.map (λ (c : γ), f c a) s).prod)

theorem continuous_multiset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] [topological_space β] {f : γ → β → α} (s : multiset γ) :
(∀ (c : γ), c scontinuous (f c))continuous (λ (a : β), (multiset.map (λ (c : γ), f c a) s).sum)

theorem continuous_finset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] [topological_space β] {f : γ → β → α} (s : finset γ) :
(∀ (c : γ), c scontinuous (f c))continuous (λ (a : β), s.prod (λ (c : γ), f c a))

theorem continuous_finset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] [topological_space β] {f : γ → β → α} (s : finset γ) :
(∀ (c : γ), c scontinuous (f c))continuous (λ (a : β), s.sum (λ (c : γ), f c a))