mathlib documentation

field_theory.​tower

field_theory.​tower

Tower of field extensions

In this file we prove the tower law for arbitrary extensions and finite extensions. Suppose L is a field extension of K and K is a field extension of F. Then [L:F] = [L:K] [K:F] where [E₁:E₂] means the E₂-dimension of E₁.

In fact we generalize it to vector spaces, where L is not necessarily a field, but just a vector space over K.

Implementation notes

We prove two versions, since there are two notions of dimensions: vector_space.dim which gives the dimension of an arbitrary vector space as a cardinal, and finite_dimensional.findim which gives the dimension of a finitely-dimensional vector space as a natural number.

Tags

tower law

theorem dim_mul_dim' (F : Type u) (K : Type v) (A : Type w) [field F] [field K] [add_comm_group A] [algebra F K] [vector_space K A] [vector_space F A] [is_scalar_tower F K A] :

Tower law: if A is a K-vector space and K is a field extension of F then dim_F(A) = dim_F(K) * dim_K(A).

theorem dim_mul_dim (F : Type u) (K A : Type v) [field F] [field K] [add_comm_group A] [algebra F K] [vector_space K A] [vector_space F A] [is_scalar_tower F K A] :

Tower law: if A is a K-vector space and K is a field extension of F then dim_F(A) = dim_F(K) * dim_K(A).

theorem finite_dimensional.​trans (F : Type u) (K : Type v) (A : Type w) [field F] [field K] [add_comm_group A] [algebra F K] [vector_space K A] [vector_space F A] [is_scalar_tower F K A] [finite_dimensional F K] [finite_dimensional K A] :

Tower law: if A is a K-algebra and K is a field extension of F then dim_F(A) = dim_F(K) * dim_K(A).