mathlib documentation

order.​ideal

order.​ideal

Order ideals, cofinal sets, and the Rasiowaโ€“Sikorski lemma

Main definitions

We work with a preorder P throughout.

References

Note that for the Rasiowaโ€“Sikorski lemma, Wikipedia uses the opposite ordering on P, in line with most presentations of forcing.

Tags

ideal, cofinal, dense, countable, generic

structure order.​ideal (P : Type u_2) [preorder P] :
Type u_2

An ideal on a preorder P is a subset of P that is

  • nonempty
  • upward directed
  • downward closed.
def order.​ideal.​principal {P : Type u_1} [preorder P] :
P โ†’ order.ideal P

The smallest ideal containing a given element.

Equations
@[instance]
def order.​ideal.​has_mem {P : Type u_1} [preorder P] :

Equations
structure order.​cofinal (P : Type u_2) [preorder P] :
Type u_2

For a preorder P, cofinal P is the type of subsets of P containing arbitrarily large elements. They are the dense sets in the topology whose open sets are terminal segments.

@[instance]
def order.​inhabited {P : Type u_1} [preorder P] :

Equations
@[instance]
def order.​has_mem {P : Type u_1} [preorder P] :

Equations
def order.​cofinal.​above {P : Type u_1} [preorder P] :
order.cofinal P โ†’ P โ†’ P

A (noncomputable) element of a cofinal set lying above a given element.

Equations
theorem order.​cofinal.​above_mem {P : Type u_1} [preorder P] (D : order.cofinal P) (x : P) :

theorem order.​cofinal.​le_above {P : Type u_1} [preorder P] (D : order.cofinal P) (x : P) :

def order.​sequence_of_cofinals {P : Type u_1} [preorder P] (p : P) {ฮน : Type u_2} [encodable ฮน] :
(ฮน โ†’ order.cofinal P) โ†’ โ„• โ†’ P

Given a starting point, and a countable family of cofinal sets, this is an increasing sequence that intersects each cofinal set.

Equations
theorem order.​sequence_of_cofinals.​monotone {P : Type u_1} [preorder P] (p : P) {ฮน : Type u_2} [encodable ฮน] (๐’Ÿ : ฮน โ†’ order.cofinal P) :

theorem order.​sequence_of_cofinals.​encode_mem {P : Type u_1} [preorder P] (p : P) {ฮน : Type u_2} [encodable ฮน] (๐’Ÿ : ฮน โ†’ order.cofinal P) (i : ฮน) :

def order.​ideal_of_cofinals {P : Type u_1} [preorder P] (p : P) {ฮน : Type u_2} [encodable ฮน] :
(ฮน โ†’ order.cofinal P) โ†’ order.ideal P

Given an element p : P and a family ๐’Ÿ of cofinal subsets of a preorder P, indexed by a countable type, ideal_of_cofinals p ๐’Ÿ is an ideal in P which

  • contains p, according to mem_ideal_of_cofinals p ๐’Ÿ, and
  • intersects every set in ๐’Ÿ, according to cofinal_meets_ideal_of_cofinals p ๐’Ÿ.

This proves the Rasiowaโ€“Sikorski lemma.

Equations
theorem order.​mem_ideal_of_cofinals {P : Type u_1} [preorder P] (p : P) {ฮน : Type u_2} [encodable ฮน] (๐’Ÿ : ฮน โ†’ order.cofinal P) :

theorem order.​cofinal_meets_ideal_of_cofinals {P : Type u_1} [preorder P] (p : P) {ฮน : Type u_2} [encodable ฮน] (๐’Ÿ : ฮน โ†’ order.cofinal P) (i : ฮน) :
โˆƒ (x : P), x โˆˆ ๐’Ÿ i โˆง x โˆˆ order.ideal_of_cofinals p ๐’Ÿ

ideal_of_cofinals p ๐’Ÿ is ๐’Ÿ-generic.