mathlib documentation

algebra.​module.​ordered

algebra.​module.​ordered

Ordered semimodules

In this file we define

Implementation notes

TODO

References

Tags

ordered semimodule, ordered module, ordered vector space

@[class]
structure ordered_semimodule (R : Type u_1) (β : Type u_2) [ordered_semiring R] [ordered_add_comm_monoid β] :
Type (max u_1 u_2)
  • to_semimodule : semimodule R β
  • smul_lt_smul_of_pos : ∀ {a b : β} {c_1 : R}, a < b0 < c_1c_1 a < c_1 b
  • lt_of_smul_lt_smul_of_nonneg : ∀ {a b : β} {c_1 : R}, c_1 a < c_1 b0 c_1a < b

An ordered semimodule is an ordered additive commutative monoid with a partial order in which the scalar multiplication is compatible with the order.

Instances
theorem smul_lt_smul_of_pos {R : Type u_1} {β : Type u_2} [ordered_semiring R] [ordered_add_comm_monoid β] [ordered_semimodule R β] {a b : β} {c : R} :
a < b0 < cc a < c b

theorem smul_le_smul_of_nonneg {R : Type u_1} {β : Type u_2} [ordered_semiring R] [ordered_add_comm_monoid β] [ordered_semimodule R β] {a b : β} {c : R} :
a b0 cc a c b

@[instance]
def order_dual.​semimodule {R : Type u_1} {β : Type u_2} [semiring R] [ordered_add_comm_monoid β] [semimodule R β] :

Equations