mathlib documentation

control.​bitraversable.​instances

control.​bitraversable.​instances

bitraversable instances

Instances

References

Tags

traversable bitraversable functor bifunctor applicative

def prod.​bitraverse {F : Type uType u} [applicative F] {α : Type u_1} {α' : Type u} {β : Type u_2} {β' : Type u} :
(α → F α')(β → F β')α × βF (α' × β')

Equations
@[instance]

Equations
def sum.​bitraverse {F : Type uType u} [applicative F] {α : Type u_1} {α' : Type u} {β : Type u_2} {β' : Type u} :
(α → F α')(β → F β')α βF (α' β')

Equations
@[instance]

Equations
def const.​bitraverse {F : Type uType u} [applicative F] {α : Type u_1} {α' : Type u} {β : Type u_2} {β' : Type u} :
(α → F α')(β → F β')functor.const α βF (functor.const α' β')

Equations
@[instance]

Equations
def flip.​bitraverse {t : Type uType uType u} [bitraversable t] {F : Type uType u} [applicative F] {α α' β β' : Type u} :
(α → F α')(β → F β')flip t α βF (flip t α' β')

Equations
@[instance]
def bitraversable.​traversable {t : Type uType uType u} [bitraversable t] {α : Type u} :

Equations
def bicompl.​bitraverse {t : Type uType uType u} [bitraversable t] (F G : Type uType u) [traversable F] [traversable G] {m : Type uType u} [applicative m] {α β α' β' : Type u} :
(α → m β)(α' → m β')function.bicompl t F G α α'm (function.bicompl t F G β β')

Equations
@[instance]
def function.​bicompl.​bitraversable {t : Type uType uType u} [bitraversable t] (F G : Type uType u) [traversable F] [traversable G] :

Equations
def bicompr.​bitraverse {t : Type uType uType u} [bitraversable t] (F : Type uType u) [traversable F] {m : Type uType u} [applicative m] {α β α' β' : Type u} :
(α → m β)(α' → m β')function.bicompr F t α α'm (function.bicompr F t β β')

Equations