mathlib documentation

linear_algebra.​affine_space.​independent

linear_algebra.​affine_space.​independent

Affine independence

This file defines affinely independent families of points.

Main definitions

References

def affine_independent (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} :
(ι → P) → Prop

An indexed family is said to be affinely independent if no nontrivial weighted subtractions (where the sum of weights is 0) are 0.

Equations
theorem affine_independent_of_subsingleton (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [subsingleton ι] (p : ι → P) :

A family with at most one point is affinely independent.

theorem affine_independent_iff_linear_independent_vsub (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} (p : ι → P) (i1 : ι) :
affine_independent k p linear_independent k (λ (i : {x // x i1}), p i -ᵥ p i1)

A family is affinely independent if and only if the differences from a base point in that family are linearly independent.

theorem affine_independent_set_iff_linear_independent_vsub (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {s : set P} {p₁ : P} :
p₁ s(affine_independent k (λ (p : s), p) linear_independent k (λ (v : ((λ (p : P), p -ᵥ p₁) '' (s \ {p₁}))), v))

A set is affinely independent if and only if the differences from a base point in that set are linearly independent.

theorem linear_independent_set_iff_affine_independent_vadd_union_singleton (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {s : set V} (hs : ∀ (v : V), v sv 0) (p₁ : P) :
linear_independent k (λ (v : s), v) affine_independent k (λ (p : ({p₁} (λ (v : V), v +ᵥ p₁) '' s)), p)

A set of nonzero vectors is linearly independent if and only if, given a point p₁, the vectors added to p₁ and p₁ itself are affinely independent.

theorem affine_independent_iff_indicator_eq_of_affine_combination_eq (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} (p : ι → P) :
affine_independent k p ∀ (s1 s2 : finset ι) (w1 w2 : ι → k), s1.sum (λ (i : ι), w1 i) = 1s2.sum (λ (i : ι), w2 i) = 1(s1.affine_combination p) w1 = (s2.affine_combination p) w2s1.indicator w1 = s2.indicator w2

A family is affinely independent if and only if any affine combinations (with sum of weights 1) that evaluate to the same point have equal set.indicator.

theorem injective_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [nontrivial k] {p : ι → P} :

An affinely independent family is injective, if the underlying ring is nontrivial.

theorem affine_independent_embedding_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} {ι2 : Type u_5} (f : ι2 ι) {p : ι → P} :

If a family is affinely independent, so is any subfamily given by composition of an embedding into index type with the original family.

theorem affine_independent_subtype_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} {p : ι → P} (ha : affine_independent k p) (s : set ι) :
affine_independent k (λ (i : s), p i)

If a family is affinely independent, so is any subfamily indexed by a subtype of the index type.

theorem affine_independent_set_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} {p : ι → P} :

If an indexed family of points is affinely independent, so is the corresponding set of points.

theorem exists_mem_inter_of_exists_mem_inter_affine_span_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) {s1 s2 : set ι} {p0 : P} :
p0 affine_span k (p '' s1)p0 affine_span k (p '' s2)(∃ (i : ι), i s1 s2)

If a family is affinely independent, and the spans of points indexed by two subsets of the index type have a point in common, those subsets of the index type have an element in common, if the underlying ring is nontrivial.

theorem affine_span_disjoint_of_disjoint_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) {s1 s2 : set ι} :
s1 s2 = (affine_span k (p '' s1)) (affine_span k (p '' s2)) =

If a family is affinely independent, the spans of points indexed by disjoint subsets of the index type are disjoint, if the underlying ring is nontrivial.

@[simp]
theorem mem_affine_span_iff_mem_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) (i : ι) (s : set ι) :
p i affine_span k (p '' s) i s

If a family is affinely independent, a point in the family is in the span of some of the points given by a subset of the index type if and only if that point's index is in the subset, if the underlying ring is nontrivial.

theorem not_mem_affine_span_diff_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) (i : ι) (s : set ι) :
p i affine_span k (p '' (s \ {i}))

If a family is affinely independent, a point in the family is not in the affine span of the other points, if the underlying ring is nontrivial.

theorem exists_subset_affine_independent_affine_span_eq_top {k : Type u_1} {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {s : set P} :
affine_independent k (λ (p : s), p)(∃ (t : set P), s t affine_independent k (λ (p : t), p) affine_span k t = )

An affinely independent set of points can be extended to such a set that spans the whole space.

structure affine.​simplex (k : Type u_1) {V : Type u_2} (P : Type u_3) [ring k] [add_comm_group V] [module k V] [affine_space V P] :
Type u_3

A simplex k P n is a collection of n + 1 affinely independent points.

def affine.​triangle (k : Type u_1) {V : Type u_2} (P : Type u_3) [ring k] [add_comm_group V] [module k V] [affine_space V P] :
Type u_3

A triangle k P is a collection of three affinely independent points.

def affine.​simplex.​mk_of_point (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] :
P → affine.simplex k P 0

Construct a 0-simplex from a point.

Equations
@[simp]
theorem affine.​simplex.​mk_of_point_points (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] (p : P) (i : fin 1) :

The point in a simplex constructed with mk_of_point.

@[instance]
def affine.​simplex.​inhabited (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] [inhabited P] :

Equations
@[instance]
def affine.​simplex.​nonempty (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] :

Equations
  • _ = _
@[ext]
theorem affine.​simplex.​ext {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {n : } {s1 s2 : affine.simplex k P n} :
(∀ (i : fin (n + 1)), s1.points i = s2.points i)s1 = s2

Two simplices are equal if they have the same points.

theorem affine.​simplex.​ext_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {n : } (s1 s2 : affine.simplex k P n) :
s1 = s2 ∀ (i : fin (n + 1)), s1.points i = s2.points i

Two simplices are equal if and only if they have the same points.

def affine.​simplex.​face {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {n : } (s : affine.simplex k P n) {fs : finset (fin (n + 1))} {m : } :
fs.card = m + 1affine.simplex k P m

A face of a simplex is a simplex with the given subset of points.

Equations
theorem affine.​simplex.​face_points {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {n : } (s : affine.simplex k P n) {fs : finset (fin (n + 1))} {m : } (h : fs.card = m + 1) (i : fin (m + 1)) :
(s.face h).points i = s.points (fs.mono_of_fin h i)

The points of a face of a simplex are given by mono_of_fin.

@[simp]
theorem affine.​simplex.​face_eq_mk_of_point {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [affine_space V P] {n : } (s : affine.simplex k P n) (i : fin (n + 1)) :

A single-point face equals the 0-simplex constructed with mk_of_point.