mathlib documentation

analysis.​normed_space.​add_torsor

analysis.​normed_space.​add_torsor

Torsors of additive normed group actions.

This file defines torsors of additive normed group actions, with a metric space structure. The motivating case is Euclidean affine spaces.

@[class]
structure normed_add_torsor (V : out_param (Type u)) (P : Type v) [out_param (normed_group V)] [metric_space P] :
Type (max u v)

A normed_add_torsor V P is a torsor of an additive normed group action by a normed_group V on points P. We bundle the metric space structure and require the distance to be the same as results from the norm (which in fact implies the distance yields a metric space, but bundling just the distance and using an instance for the metric space results in type class problems).

Instances
theorem dist_eq_norm_vsub (V : Type u) {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] (x y : P) :

The distance equals the norm of subtracting two points. In this lemma, it is necessary to have V as an explicit argument; otherwise rw dist_eq_norm_vsub sometimes doesn't work.

@[simp]
theorem dist_vadd_cancel_left {V : Type u} {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] (v : V) (x y : P) :

@[simp]
theorem dist_vadd_cancel_right {V : Type u} {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] (v₁ v₂ : V) (x : P) :
has_dist.dist (v₁ +ᵥ x) (v₂ +ᵥ x) = has_dist.dist v₁ v₂

The distance defines a metric space structure on the torsor. This is not an instance because it depends on V to define a metric_space P.

Equations
def isometric.​vadd_const {V : Type u} {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] :
P → V ≃ᵢ P

The map v ↦ v +ᵥ p as an isometric equivalence between V and P.

Equations
@[simp]
theorem isometric.​coe_vadd_const {V : Type u} {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] (p : P) :
(isometric.vadd_const p) = λ (v : V), v +ᵥ p

@[simp]
theorem isometric.​coe_vadd_const_symm {V : Type u} {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] (p : P) :
((isometric.vadd_const p).symm) = λ (p' : P), p' -ᵥ p

@[simp]

def isometric.​const_vadd {V : Type u} (P : Type v) [normed_group V] [metric_space P] [normed_add_torsor V P] :
V → P ≃ᵢ P

The map p ↦ v +ᵥ p as an isometric automorphism of P.

Equations
@[simp]
theorem isometric.​coe_const_vadd {V : Type u} (P : Type v) [normed_group V] [metric_space P] [normed_add_torsor V P] (v : V) :

@[simp]

theorem isometry.​vadd_vsub {V : Type u} {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P] {V' : Type u_1} {P' : Type u_2} [normed_group V'] [metric_space P'] [normed_add_torsor V' P'] {f : P → P'} (hf : isometry f) {p : P} {g : V → V'} :
(∀ (v : V), g v = f (v +ᵥ p) -ᵥ f p)isometry g

The map g from V1 to V2 corresponding to a map f from P1 to P2, at a base point p, is an isometry if f is one.