mathlib documentation

category_theory.​monoidal.​internal

category_theory.​monoidal.​internal

The category of monoids in a monoidal category, and modules over an internal monoid.

structure Mon_ (C : Type u) [category_theory.category C] [category_theory.monoidal_category C] :
Type (max u v)

A monoid object internal to a monoidal category.

When the monoidal category is preadditive, this is also sometimes called an "algebra object".

theorem Mon_.​assoc_flip {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {M : Mon_ C} :
(𝟙 M.X M.mul) M.mul = (α_ M.X M.X M.X).inv (M.mul 𝟙 M.X) M.mul

theorem Mon_.​hom.​ext_iff {C : Type u} {_inst_1 : category_theory.category C} {_inst_2 : category_theory.monoidal_category C} {M N : Mon_ C} (x y : M.hom N) :
x = y x.hom = y.hom

theorem Mon_.​hom.​ext {C : Type u} {_inst_1 : category_theory.category C} {_inst_2 : category_theory.monoidal_category C} {M N : Mon_ C} (x y : M.hom N) :
x.hom = y.homx = y

@[ext]
structure Mon_.​hom {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] :
Mon_ CMon_ CType v

A morphism of monoid objects.

@[simp]

The identity morphism on a monoid object.

Equations
@[instance]

Equations
@[simp]
theorem Mon_.​comp_hom {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {M N O : Mon_ C} (f : M.hom N) (g : N.hom O) :
(Mon_.comp f g).hom = f.hom g.hom

def Mon_.​comp {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {M N O : Mon_ C} :
M.hom NN.hom OM.hom O

Composition of morphisms of monoid objects.

Equations
@[instance]

Equations
@[simp]

@[simp]
theorem Mon_.​comp_hom' {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {M N K : Mon_ C} (f : M N) (g : N K) :
(f g).hom = f.hom g.hom

The forgetful functor from monoid objects to the ambient category.

Equations
structure Mod {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] :
Mon_ CType (max u v)

A module object for a monoid object, all internal to some monoidal category.

theorem Mod.​assoc_flip {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} (M : Mod A) :
(𝟙 A.X M.act) M.act = (α_ A.X A.X M.X).inv (A.mul 𝟙 M.X) M.act

theorem Mod.​hom.​ext_iff {C : Type u} {_inst_1 : category_theory.category C} {_inst_2 : category_theory.monoidal_category C} {A : Mon_ C} {M N : Mod A} (x y : M.hom N) :
x = y x.hom = y.hom

@[ext]
structure Mod.​hom {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} :
Mod AMod AType v

A morphism of module objects.

theorem Mod.​hom.​ext {C : Type u} {_inst_1 : category_theory.category C} {_inst_2 : category_theory.monoidal_category C} {A : Mon_ C} {M N : Mod A} (x y : M.hom N) :
x.hom = y.homx = y

def Mod.​id {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} (M : Mod A) :
M.hom M

The identity morphism on a module object.

Equations
@[simp]
theorem Mod.​id_hom {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} (M : Mod A) :
M.id.hom = 𝟙 M.X

@[instance]

Equations
@[simp]
theorem Mod.​comp_hom {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} {M N O : Mod A} (f : M.hom N) (g : N.hom O) :
(Mod.comp f g).hom = f.hom g.hom

def Mod.​comp {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} {M N O : Mod A} :
M.hom NN.hom OM.hom O

Composition of module object morphisms.

Equations
@[instance]

Equations
@[simp]
theorem Mod.​id_hom' {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} (M : Mod A) :
(𝟙 M).hom = 𝟙 M.X

@[simp]
theorem Mod.​comp_hom' {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A : Mon_ C} {M N K : Mod A} (f : M N) (g : N K) :
(f g).hom = f.hom g.hom

A monoid object as a module over itself.

Equations
def Mod.​comap {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} :
(A B)Mod B Mod A

A morphism of monoid objects induces a "restriction" or "comap" functor between the categories of module objects.

Equations
@[simp]
theorem Mod.​comap_obj_act {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (f : A B) (M : Mod B) :
((Mod.comap f).obj M).act = (f.hom 𝟙 M.X) M.act

@[simp]
theorem Mod.​comap_map_hom {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (f : A B) (M N : Mod B) (g : M N) :
((Mod.comap f).map g).hom = g.hom

@[simp]
theorem Mod.​comap_obj_X {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (f : A B) (M : Mod B) :
((Mod.comap f).obj M).X = M.X

Projects: