mathlib documentation

category_theory.​monad.​adjunction

category_theory.​monad.​adjunction

@[simp]

@[class]
structure category_theory.​reflective {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] :
D CType (max u₁ u₂ v₁ v₂)

A functor is reflective, or a reflective inclusion, if it is fully faithful and right adjoint.

Instances
@[class]
structure category_theory.​monadic_right_adjoint {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] :
D CType (max u₁ u₂ v₁ v₂)

A right adjoint functor R : D ⥤ C is monadic if the comparison function monad.comparison R from D to the category of Eilenberg-Moore algebras for the adjunction is an equivalence.

Instances