Topological properties of ℝ
@[instance]
Equations
- rat.metric_space = metric_space.induced coe rat.metric_space._proof_1 real.metric_space
@[instance]
Equations
- int.metric_space = let M : metric_space ℤ := metric_space.induced coe int.metric_space._proof_1 real.metric_space in M.replace_uniformity int.metric_space._proof_2
@[instance]
Equations
@[instance]
Equations
@[instance]
@[instance]
theorem
real.continuous.inv
{α : Type u}
[topological_space α]
{f : α → ℝ} :
(∀ (a : α), f a ≠ 0) → continuous f → continuous (λ (a : α), (f a)⁻¹)
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
theorem
tendsto_coe_nat_real_at_top_iff
{α : Type u}
{f : α → ℕ}
{l : filter α} :
filter.tendsto (λ (n : α), ↑(f n)) l filter.at_top ↔ filter.tendsto f l filter.at_top
theorem
tendsto_coe_int_real_at_top_iff
{α : Type u}
{f : α → ℤ}
{l : filter α} :
filter.tendsto (λ (n : α), ↑(f n)) l filter.at_top ↔ filter.tendsto f l filter.at_top
theorem
real.bounded_iff_bdd_below_bdd_above
{s : set ℝ} :
metric.bounded s ↔ bdd_below s ∧ bdd_above s
theorem
real.image_Icc
{f : ℝ → ℝ}
{a b : ℝ} :
a ≤ b → continuous_on f (set.Icc a b) → f '' set.Icc a b = set.Icc (has_Inf.Inf (f '' set.Icc a b)) (has_Sup.Sup (f '' set.Icc a b))