mathlib documentation

topology.​instances.​real

topology.​instances.​real

Topological properties of ℝ

@[instance]

Equations
theorem rat.​dist_eq (x y : ) :

@[simp]

@[instance]

Equations
theorem int.​dist_eq (x y : ) :

@[simp]

@[simp]

theorem real.​uniform_continuous_inv (s : set ) {r : } :
0 < r(∀ (x : ), x sr abs x)uniform_continuous (λ (p : s), (p.val)⁻¹)

theorem real.​tendsto_inv {r : } :
r 0filter.tendsto (λ (q : ), q⁻¹) (nhds r) (nhds r⁻¹)

theorem real.​continuous_inv  :
continuous (λ (a : {r // r 0}), (a.val)⁻¹)

theorem real.​continuous.​inv {α : Type u} [topological_space α] {f : α → } :
(∀ (a : α), f a 0)continuous fcontinuous (λ (a : α), (f a)⁻¹)

theorem real.​uniform_continuous_mul (s : set ( × )) {r₁ r₂ : } :
(∀ (x : × ), x sabs x.fst < r₁ abs x.snd < r₂)uniform_continuous (λ (p : s), p.val.fst * p.val.snd)

theorem real.​continuous_mul  :
continuous (λ (p : × ), p.fst * p.snd)

theorem rat.​continuous_mul  :
continuous (λ (p : × ), p.fst * p.snd)

theorem real.​ball_eq_Ioo (x ε : ) :
metric.ball x ε = set.Ioo (x - ε) (x + ε)

theorem real.​Ioo_eq_ball (x y : ) :
set.Ioo x y = metric.ball ((x + y) / 2) ((y - x) / 2)

theorem tendsto_coe_nat_real_at_top_iff {α : Type u} {f : α → } {l : filter α} :

theorem tendsto_coe_int_real_at_top_iff {α : Type u} {f : α → } {l : filter α} :

theorem closure_of_rat_image_lt {q : } :
closure (coe '' {x : | q < x}) = {r : | q r}

theorem compact_Icc {a b : } :

theorem real.​image_Icc {f : } {a b : } :
a bcontinuous_on f (set.Icc a b)f '' set.Icc a b = set.Icc (has_Inf.Inf (f '' set.Icc a b)) (has_Sup.Sup (f '' set.Icc a b))