Local extrema of functions on topological spaces
Main definitions
This file defines special versions of is_*_filter f a l
, *=min/max/extr
,
from order/filter/extr
for two kinds of filters: nhds_within
and nhds
.
These versions are called is_local_*_on
and is_local_*
, respectively.
Main statements
Many lemmas in this file restate those from order/filter/extr
, and you can find
a detailed documentation there. These convenience lemmas are provided only to make the dot notation
return propositions of expected types, not just is_*_filter
.
Here is the list of statements specific to these two types of filters:
is_local_*.on
,is_local_*_on.on_subset
: restrict to a subset;is_local_*_on.inter
: intersect the set with another one;is_*_on.localize
: a global extremum is a local extremum too.is_[local_]*_on.is_local_*
: if we haveis_local_*_on f s a
ands ∈ 𝓝 a
, then we haveis_local_* f a
.
is_local_min_on f s a
means that f a ≤ f x
for all x ∈ s
in some neighborhood of a
.
Equations
- is_local_min_on f s a = is_min_filter f (nhds_within a s) a
is_local_max_on f s a
means that f x ≤ f a
for all x ∈ s
in some neighborhood of a
.
Equations
- is_local_max_on f s a = is_max_filter f (nhds_within a s) a
is_local_extr_on f s a
means is_local_min_on f s a ∨ is_local_max_on f s a
.
Equations
- is_local_extr_on f s a = is_extr_filter f (nhds_within a s) a
is_local_min f a
means that f a ≤ f x
for all x
in some neighborhood of a
.
Equations
- is_local_min f a = is_min_filter f (nhds a) a
is_local_max f a
means that f x ≤ f a
for all x ∈ s
in some neighborhood of a
.
Equations
- is_local_max f a = is_max_filter f (nhds a) a
is_local_extr_on f s a
means is_local_min_on f s a ∨ is_local_max_on f s a
.
Equations
- is_local_extr f a = is_extr_filter f (nhds a) a