Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D
When D
is a monoidal category,
monoid objects in C ⥤ D
are the same thing as functors from C
into the monoid objects of D
.
This is formalised as:
The intended application is that as Ring ≌ Mon_ Ab
(not yet constructed!),
we have presheaf Ring X ≌ presheaf (Mon_ Ab) X ≌ Mon_ (presheaf Ab X)
,
and we can model a module over a presheaf of rings as a module object in presheaf Ab X
.
Future work
Presumably this statement is not specific to monoids, and could be generalised to any internal algebraic objects, if the appropriate framework was available.
Functor translating a monoid object in a functor category to a functor into the category of monoid objects.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.functor = {obj := λ (A : Mon_ (C ⥤ D)), {obj := λ (X : C), {X := A.X.obj X, one := A.one.app X, mul := A.mul.app X, one_mul' := _, mul_one' := _, mul_assoc' := _}, map := λ (X Y : C) (f : X ⟶ Y), {hom := A.X.map f, one_hom' := _, mul_hom' := _}, map_id' := _, map_comp' := _}, map := λ (A B : Mon_ (C ⥤ D)) (f : A ⟶ B), {app := λ (X : C), {hom := f.hom.app X, one_hom' := _, mul_hom' := _}, naturality' := _}, map_id' := _, map_comp' := _}
Functor translating a functor into the category of monoid objects to a monoid object in the functor category
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.inverse = {obj := λ (F : C ⥤ Mon_ D), {X := {obj := λ (X : C), (F.obj X).X, map := λ (X Y : C) (f : X ⟶ Y), (F.map f).hom, map_id' := _, map_comp' := _}, one := {app := λ (X : C), (F.obj X).one, naturality' := _}, mul := {app := λ (X : C), (F.obj X).mul, naturality' := _}, one_mul' := _, mul_one' := _, mul_assoc' := _}, map := λ (F G : C ⥤ Mon_ D) (α : F ⟶ G), {hom := {app := λ (X : C), (α.app X).hom, naturality' := _}, one_hom' := _, mul_hom' := _}, map_id' := _, map_comp' := _}
The unit for the equivalence Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D
.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.unit_iso = category_theory.nat_iso.of_components (λ (A : Mon_ (C ⥤ D)), {hom := {hom := {app := λ (_x : C), 𝟙 (((𝟭 (Mon_ (C ⥤ D))).obj A).X.obj _x), naturality' := _}, one_hom' := _, mul_hom' := _}, inv := {hom := {app := λ (_x : C), 𝟙 (((category_theory.monoidal.Mon_functor_category_equivalence.functor ⋙ category_theory.monoidal.Mon_functor_category_equivalence.inverse).obj A).X.obj _x), naturality' := _}, one_hom' := _, mul_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}) category_theory.monoidal.Mon_functor_category_equivalence.unit_iso._proof_9
The counit for the equivalence Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D
.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.counit_iso = category_theory.nat_iso.of_components (λ (A : C ⥤ Mon_ D), category_theory.nat_iso.of_components (λ (X : C), {hom := {hom := 𝟙 (((category_theory.monoidal.Mon_functor_category_equivalence.inverse ⋙ category_theory.monoidal.Mon_functor_category_equivalence.functor).obj A).obj X).X, one_hom' := _, mul_hom' := _}, inv := {hom := 𝟙 (((𝟭 (C ⥤ Mon_ D)).obj A).obj X).X, one_hom' := _, mul_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}) _) category_theory.monoidal.Mon_functor_category_equivalence.counit_iso._proof_8
When D
is a monoidal category,
monoid objects in C ⥤ D
are the same thing
as functors from C
into the monoid objects of D
.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence = {functor := category_theory.monoidal.Mon_functor_category_equivalence.functor _inst_3, inverse := category_theory.monoidal.Mon_functor_category_equivalence.inverse _inst_3, unit_iso := category_theory.monoidal.Mon_functor_category_equivalence.unit_iso _inst_3, counit_iso := category_theory.monoidal.Mon_functor_category_equivalence.counit_iso _inst_3, functor_unit_iso_comp' := _}