Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D
When D is a monoidal category,
monoid objects in C ⥤ D are the same thing as functors from C into the monoid objects of D.
This is formalised as:
The intended application is that as Ring ≌ Mon_ Ab (not yet constructed!),
we have presheaf Ring X ≌ presheaf (Mon_ Ab) X ≌ Mon_ (presheaf Ab X),
and we can model a module over a presheaf of rings as a module object in presheaf Ab X.
Future work
Presumably this statement is not specific to monoids, and could be generalised to any internal algebraic objects, if the appropriate framework was available.
Functor translating a monoid object in a functor category to a functor into the category of monoid objects.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.functor = {obj := λ (A : Mon_ (C ⥤ D)), {obj := λ (X : C), {X := A.X.obj X, one := A.one.app X, mul := A.mul.app X, one_mul' := _, mul_one' := _, mul_assoc' := _}, map := λ (X Y : C) (f : X ⟶ Y), {hom := A.X.map f, one_hom' := _, mul_hom' := _}, map_id' := _, map_comp' := _}, map := λ (A B : Mon_ (C ⥤ D)) (f : A ⟶ B), {app := λ (X : C), {hom := f.hom.app X, one_hom' := _, mul_hom' := _}, naturality' := _}, map_id' := _, map_comp' := _}
Functor translating a functor into the category of monoid objects to a monoid object in the functor category
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.inverse = {obj := λ (F : C ⥤ Mon_ D), {X := {obj := λ (X : C), (F.obj X).X, map := λ (X Y : C) (f : X ⟶ Y), (F.map f).hom, map_id' := _, map_comp' := _}, one := {app := λ (X : C), (F.obj X).one, naturality' := _}, mul := {app := λ (X : C), (F.obj X).mul, naturality' := _}, one_mul' := _, mul_one' := _, mul_assoc' := _}, map := λ (F G : C ⥤ Mon_ D) (α : F ⟶ G), {hom := {app := λ (X : C), (α.app X).hom, naturality' := _}, one_hom' := _, mul_hom' := _}, map_id' := _, map_comp' := _}
The unit for the equivalence Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.unit_iso = category_theory.nat_iso.of_components (λ (A : Mon_ (C ⥤ D)), {hom := {hom := {app := λ (_x : C), 𝟙 (((𝟭 (Mon_ (C ⥤ D))).obj A).X.obj _x), naturality' := _}, one_hom' := _, mul_hom' := _}, inv := {hom := {app := λ (_x : C), 𝟙 (((category_theory.monoidal.Mon_functor_category_equivalence.functor ⋙ category_theory.monoidal.Mon_functor_category_equivalence.inverse).obj A).X.obj _x), naturality' := _}, one_hom' := _, mul_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}) category_theory.monoidal.Mon_functor_category_equivalence.unit_iso._proof_9
The counit for the equivalence Mon_ (C ⥤ D) ≌ C ⥤ Mon_ D.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence.counit_iso = category_theory.nat_iso.of_components (λ (A : C ⥤ Mon_ D), category_theory.nat_iso.of_components (λ (X : C), {hom := {hom := 𝟙 (((category_theory.monoidal.Mon_functor_category_equivalence.inverse ⋙ category_theory.monoidal.Mon_functor_category_equivalence.functor).obj A).obj X).X, one_hom' := _, mul_hom' := _}, inv := {hom := 𝟙 (((𝟭 (C ⥤ Mon_ D)).obj A).obj X).X, one_hom' := _, mul_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}) _) category_theory.monoidal.Mon_functor_category_equivalence.counit_iso._proof_8
When D is a monoidal category,
monoid objects in C ⥤ D are the same thing
as functors from C into the monoid objects of D.
Equations
- category_theory.monoidal.Mon_functor_category_equivalence = {functor := category_theory.monoidal.Mon_functor_category_equivalence.functor _inst_3, inverse := category_theory.monoidal.Mon_functor_category_equivalence.inverse _inst_3, unit_iso := category_theory.monoidal.Mon_functor_category_equivalence.unit_iso _inst_3, counit_iso := category_theory.monoidal.Mon_functor_category_equivalence.counit_iso _inst_3, functor_unit_iso_comp' := _}