mathlib documentation

ring_theory.​adjoin

ring_theory.​adjoin

theorem algebra.​subset_adjoin {R : Type u} {A : Type v} [comm_semiring R] [semiring A] [algebra R A] {s : set A} :

theorem algebra.​adjoin_le {R : Type u} {A : Type v} [comm_semiring R] [semiring A] [algebra R A] {s : set A} {S : subalgebra R A} :
s Salgebra.adjoin R s S

theorem algebra.​adjoin_le_iff {R : Type u} {A : Type v} [comm_semiring R] [semiring A] [algebra R A] {s : set A} {S : subalgebra R A} :

theorem algebra.​adjoin_mono {R : Type u} {A : Type v} [comm_semiring R] [semiring A] [algebra R A] {s t : set A} :

@[simp]
theorem algebra.​adjoin_empty (R : Type u) (A : Type v) [comm_semiring R] [semiring A] [algebra R A] :

theorem algebra.​adjoin_eq_span (R : Type u) {A : Type v} [comm_semiring R] [semiring A] [algebra R A] (s : set A) :

theorem algebra.​adjoin_union (R : Type u) {A : Type v} [comm_semiring R] [comm_semiring A] [algebra R A] (s t : set A) :

theorem algebra.​adjoin_eq_range (R : Type u) {A : Type v} [comm_semiring R] [comm_semiring A] [algebra R A] (s : set A) :

theorem algebra.​adjoin_singleton_eq_range (R : Type u) {A : Type v} [comm_semiring R] [comm_semiring A] [algebra R A] (x : A) :

theorem algebra.​adjoin_union_coe_submodule (R : Type u) {A : Type v} [comm_semiring R] [comm_semiring A] [algebra R A] (s t : set A) :

theorem algebra.​mem_adjoin_iff {R : Type u} {A : Type v} [comm_ring R] [ring A] [algebra R A] {s : set A} {x : A} :

theorem algebra.​adjoin_eq_ring_closure {R : Type u} {A : Type v} [comm_ring R] [ring A] [algebra R A] (s : set A) :

theorem algebra.​fg_trans {R : Type u} {A : Type v} [comm_ring R] [comm_ring A] [algebra R A] {s t : set A} :

def subalgebra.​fg {R : Type u} {A : Type v} [comm_ring R] [comm_ring A] [algebra R A] :
subalgebra R A → Prop

A subalgebra S is finitely generated if there exists t : finset A such that algebra.adjoin R t = S.

Equations
theorem subalgebra.​fg_def {R : Type u} {A : Type v} [comm_ring R] [comm_ring A] [algebra R A] {S : subalgebra R A} :
S.fg ∃ (t : set A), t.finite algebra.adjoin R t = S

theorem subalgebra.​fg_bot {R : Type u} {A : Type v} [comm_ring R] [comm_ring A] [algebra R A] :

@[instance]
def alg_hom.​is_noetherian_ring_range {R : Type u} {A : Type v} {B : Type w} [comm_ring R] [comm_ring A] [comm_ring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) [is_noetherian_ring A] :

Equations
  • _ = _
theorem is_noetherian_ring_of_fg {R : Type u} {A : Type v} [comm_ring R] [comm_ring A] [algebra R A] {S : subalgebra R A} (HS : S.fg) [is_noetherian_ring R] :