mathlib documentation

order.​complete_boolean_algebra

order.​complete_boolean_algebra

@[class]
structure complete_distrib_lattice  :
Type u_1Type u_1

A complete distributive lattice is a bit stronger than the name might suggest; perhaps completely distributive lattice is more descriptive, as this class includes a requirement that the lattice join distribute over arbitrary infima, and similarly for the dual.

Instances
theorem sup_Inf_eq {α : Type u} [complete_distrib_lattice α] {a : α} {s : set α} :
a has_Inf.Inf s = ⨅ (b : α) (H : b s), a b

theorem Inf_sup_eq {α : Type u} [complete_distrib_lattice α] {b : α} {s : set α} :
has_Inf.Inf s b = ⨅ (a : α) (H : a s), a b

theorem inf_Sup_eq {α : Type u} [complete_distrib_lattice α] {a : α} {s : set α} :
a has_Sup.Sup s = ⨆ (b : α) (H : b s), a b

theorem Sup_inf_eq {α : Type u} [complete_distrib_lattice α] {b : α} {s : set α} :
has_Sup.Sup s b = ⨆ (a : α) (H : a s), a b

theorem Inf_sup_Inf {α : Type u} [complete_distrib_lattice α] {s t : set α} :
has_Inf.Inf s has_Inf.Inf t = ⨅ (p : α × α) (H : p s.prod t), p.fst p.snd

theorem Sup_inf_Sup {α : Type u} [complete_distrib_lattice α] {s t : set α} :
has_Sup.Sup s has_Sup.Sup t = ⨆ (p : α × α) (H : p s.prod t), p.fst p.snd

@[class]
structure complete_boolean_algebra  :
Type u_1Type u_1

A complete boolean algebra is a completely distributive boolean algebra.

Instances
theorem compl_infi {α : Type u} {ι : Sort w} [complete_boolean_algebra α] {f : ι → α} :
(infi f) = ⨆ (i : ι), (f i)

theorem compl_supr {α : Type u} {ι : Sort w} [complete_boolean_algebra α] {f : ι → α} :
(supr f) = ⨅ (i : ι), (f i)

theorem compl_Inf {α : Type u} [complete_boolean_algebra α] {s : set α} :
(has_Inf.Inf s) = ⨆ (i : α) (H : i s), i

theorem compl_Sup {α : Type u} [complete_boolean_algebra α] {s : set α} :
(has_Sup.Sup s) = ⨅ (i : α) (H : i s), i