Basic Definitions/Theorems for Continued Fractions
Summary
We define generalised, simple, and regular continued fractions and functions to evaluate their convergents. We follow the naming conventions from Wikipedia and [wall2018analytic], Chapter 1.
Main definitions
- Generalised continued fractions (gcfs)
- Simple continued fractions (scfs)
- (Regular) continued fractions ((r)cfs)
- Computation of convergents using the recurrence relation in
convergents. - Computation of convergents by directly evaluating the fraction described by the gcf in
convergents'.
Implementation notes
- The most commonly used kind of continued fractions in the literature are regular continued
fractions. We hence just call them
continued_fractionsin the library. - We use sequences from
data.seqto encode potentially infinite sequences.
References
- https://en.wikipedia.org/wiki/Generalized_continued_fraction
- [Wall, H.S., Analytic Theory of Continued Fractions][wall2018analytic]
Tags
numerics, number theory, approximations, fractions
- a : α
- b : α
We collect a partial numerator aᵢ and partial denominator bᵢ in a pair ⟨aᵢ,bᵢ⟩.
Make a gcf.pair printable.
Interlude: define some expected coercions.
Coerce a pair by elementwise coercion.
Equations
- generalized_continued_fraction.pair.has_coe_to_generalized_continued_fraction_pair = {coe := λ (_x : generalized_continued_fraction.pair α), generalized_continued_fraction.pair.has_coe_to_generalized_continued_fraction_pair._match_1 _x}
- generalized_continued_fraction.pair.has_coe_to_generalized_continued_fraction_pair._match_1 {a := a, b := b} = {a := ↑a, b := ↑b}
- h : α
- s : seq (generalized_continued_fraction.pair α)
A generalised continued fraction (gcf) is a potentially infinite expression of the form
a₀
h + ---------------------------
a₁
b₀ + --------------------
a₂
b₁ + --------------
a₃
b₂ + --------
b₃ + ...
where h is called the head term or integer part, the aᵢ are called the
partial numerators and the bᵢ the partial denominators of the gcf.
We store the sequence of partial numerators and denominators in a sequence of
generalized_continued_fraction.pairs s.
For convenience, one often writes [h; (a₀, b₀), (a₁, b₁), (a₂, b₂),...].
Constructs a generalized continued fraction without fractional part.
Equations
Returns the sequence of partial numerators aᵢ of g.
Equations
Returns the sequence of partial denominators bᵢ of g.
Equations
A gcf terminated at position n if its sequence terminates at position n.
Equations
- g.terminated_at n = g.s.terminated_at n
It is decidable whether a gcf terminated at a given position.
Equations
- g.terminated_at_decidable n = _.mpr (g.s.terminated_at_decidable n)
A gcf terminates if its sequence terminates.
Equations
- g.terminates = g.s.terminates
Interlude: define some expected coercions.
Coerce a gcf by elementwise coercion.
Equations
- generalized_continued_fraction.has_coe_to_generalized_continued_fraction = {coe := λ (_x : generalized_continued_fraction α), generalized_continued_fraction.has_coe_to_generalized_continued_fraction._match_1 _x}
- generalized_continued_fraction.has_coe_to_generalized_continued_fraction._match_1 {h := h, s := s} = {h := ↑h, s := ↑s}
A generalized continued fraction is a simple continued fraction if all partial numerators are equal to one.
1
h + ---------------------------
1
b₀ + --------------------
1
b₁ + --------------
1
b₂ + --------
b₃ + ...
Equations
- g.is_simple_continued_fraction = ∀ (n : ℕ) (aₙ : α), g.partial_numerators.nth n = option.some aₙ → aₙ = 1
A simple continued fraction (scf) is a generalized continued fraction (gcf) whose partial numerators are equal to one.
1
h + ---------------------------
1
b₀ + --------------------
1
b₁ + --------------
1
b₂ + --------
b₃ + ...
For convenience, one often writes [h; b₀, b₁, b₂,...].
It is encoded as the subtype of gcfs that satisfy
generalized_continued_fraction.is_simple_continued_fraction.
Equations
Constructs a simple continued fraction without fractional part.
Equations
Lift a scf to a gcf using the inclusion map.
Equations
- simple_continued_fraction.has_coe_to_generalized_continued_fraction = simple_continued_fraction.has_coe_to_generalized_continued_fraction._proof_1.mpr coe_subtype
A simple continued fraction is a (regular) continued fraction ((r)cf) if all partial denominators
bᵢ are positive, i.e. 0 < bᵢ.
Equations
- s.is_regular_continued_fraction = ∀ (n : ℕ) (bₙ : α), ↑s.partial_denominators.nth n = option.some bₙ → 0 < bₙ
A (regular) continued fraction ((r)cf) is a simple continued fraction (scf) whose partial
denominators are all positive. It is the subtype of scfs that satisfy
simple_continued_fraction.is_regular_continued_fraction.
Equations
- continued_fraction α = {s // s.is_regular_continued_fraction}
Constructs a continued fraction without fractional part.
Equations
Equations
Lift a cf to a scf using the inclusion map.
Equations
- continued_fraction.has_coe_to_simple_continued_fraction = continued_fraction.has_coe_to_simple_continued_fraction._proof_1.mpr coe_subtype
Lift a cf to a scf using the inclusion map.
Equations
Returns the next numerator Aₙ = bₙ₋₁ * Aₙ₋₁ + aₙ₋₁ * Aₙ₋₂, where predA is Aₙ₋₁,
ppredA is Aₙ₋₂, a is aₙ₋₁, and b is bₙ₋₁.
Equations
- generalized_continued_fraction.next_numerator a b ppredA predA = b * predA + a * ppredA
Returns the next denominator Bₙ = bₙ₋₁ * Bₙ₋₁ + aₙ₋₁ * Bₙ₋₂``, wherepredBisBₙ₋₁and
ppredBisBₙ₋₂,aisaₙ₋₁, andbisbₙ₋₁`.
Equations
- generalized_continued_fraction.next_denominator aₙ bₙ ppredB predB = bₙ * predB + aₙ * ppredB
Returns the next continuants ⟨Aₙ, Bₙ⟩ using next_numerator and next_denominator, where pred
is ⟨Aₙ₋₁, Bₙ₋₁⟩, ppred is ⟨Aₙ₋₂, Bₙ₋₂⟩, a is aₙ₋₁, and b is bₙ₋₁.
Equations
- generalized_continued_fraction.next_continuants a b ppred pred = {a := generalized_continued_fraction.next_numerator a b ppred.a pred.a, b := generalized_continued_fraction.next_denominator a b ppred.b pred.b}
Returns the continuants ⟨Aₙ₋₁, Bₙ₋₁⟩ of g.
Equations
- g.continuants_aux (n + 2) = generalized_continued_fraction.continuants_aux._match_1 (g.continuants_aux n.succ) (g.continuants_aux n) (g.continuants_aux n.succ) (g.s.nth n)
- g.continuants_aux 1 = {a := g.h, b := 1}
- g.continuants_aux 0 = {a := 1, b := 0}
- generalized_continued_fraction.continuants_aux._match_1 _f_1 _f_2 _f_3 (option.some gp) = generalized_continued_fraction.next_continuants gp.a gp.b _f_2 _f_3
- generalized_continued_fraction.continuants_aux._match_1 _f_1 _f_2 _f_3 option.none = _f_1
Returns the continuants ⟨Aₙ, Bₙ⟩ of g.
Equations
Returns the numerators Aₙ of g.
Equations
Returns the denominators Bₙ of g.
Equations
Returns the convergents Aₙ / Bₙ of g, where Aₙ, Bₙ are the nth continuants of g.
Equations
- g.convergents = λ (n : ℕ), g.numerators n / g.denominators n
Returns the approximation of the fraction described by the given sequence up to a given position n.
For example, convergents'_aux [(1, 2), (3, 4), (5, 6)] 2 = 1 / (2 + 3 / 4) and
convergents'_aux [(1, 2), (3, 4), (5, 6)] 0 = 0.
Equations
- generalized_continued_fraction.convergents'_aux s (n + 1) = generalized_continued_fraction.convergents'_aux._match_1 (generalized_continued_fraction.convergents'_aux s.tail n) s.head
- generalized_continued_fraction.convergents'_aux s 0 = 0
- generalized_continued_fraction.convergents'_aux._match_1 _f_1 (option.some gp) = gp.a / (gp.b + _f_1)
- generalized_continued_fraction.convergents'_aux._match_1 _f_1 option.none = 0
Returns the convergents of g by evaluating the fraction described by g up to a given
position n. For example, convergents' [9; (1, 2), (3, 4), (5, 6)] 2 = 9 + 1 / (2 + 3 / 4) and
convergents' [9; (1, 2), (3, 4), (5, 6)] 0 = 9