mathlib documentation

category_theory.​groupoid

category_theory.​groupoid

@[class]
structure category_theory.​groupoid  :
Type uType (max u (v+1))

A groupoid is a category such that all morphisms are isomorphisms.

Instances
def category_theory.​large_groupoid  :
Type (u+1)Type (u+1)

def category_theory.​small_groupoid  :
Type uType (u+1)

def category_theory.​groupoid.​iso_equiv_hom {C : Type u} [category_theory.groupoid C] (X Y : C) :
(X Y) (X Y)

In a groupoid, isomorphisms are equivalent to morphisms.

Equations

A category where every morphism is_iso is a groupoid.

Equations

A category where every morphism has a trunc retraction is computably a groupoid.

Equations