mathlib documentation

algebra.​floor

algebra.​floor

Floor and Ceil

Summary

We define floor, ceil, and nat_ceil functions on linear ordered rings.

Main Definitions

Notations

Tags

rounding

@[class]
structure floor_ring (α : Type u_2) [linear_ordered_ring α] :
Type u_2

A floor_ring is a linear ordered ring over α with a function floor : α → ℤ satisfying ∀ (z : ℤ) (x : α), z ≤ floor x ↔ (z : α) ≤ x).

Instances
@[instance]

Equations
def floor {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :
α →

floor x is the greatest integer z such that z ≤ x

Equations
theorem le_floor {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {z : } {x : α} :

theorem floor_lt {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {x : α} {z : } :
x < z x < z

theorem floor_le {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

theorem floor_nonneg {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {x : α} :
0 x 0 x

theorem lt_succ_floor {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

theorem lt_floor_add_one {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

theorem sub_one_lt_floor {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

@[simp]
theorem floor_coe {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (z : ) :

@[simp]
theorem floor_zero {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :

@[simp]
theorem floor_one {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :

theorem floor_mono {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a b : α} :
a ba b

@[simp]
theorem floor_add_int {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) (z : ) :

theorem floor_sub_int {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) (z : ) :

theorem abs_sub_lt_one_of_floor_eq_floor {α : Type u_1} [decidable_linear_ordered_comm_ring α] [floor_ring α] {x y : α} :
x = yabs (x - y) < 1

theorem floor_eq_iff {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {r : α} {z : } :
r = z z r r < z + 1

theorem floor_ring_unique {α : Type u_1} [linear_ordered_ring α] (inst1 inst2 : floor_ring α) :

def fract {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :
α → α

The fractional part fract r of r is just r - ⌊r⌋

Equations
@[simp]
theorem floor_add_fract {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :

@[simp]
theorem fract_add_floor {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :

theorem fract_nonneg {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :

theorem fract_lt_one {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :
fract r < 1

@[simp]
theorem fract_zero {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :
fract 0 = 0

@[simp]
theorem fract_coe {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (z : ) :

@[simp]
theorem fract_floor {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :

@[simp]
theorem floor_fract {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :

theorem fract_eq_iff {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {r s : α} :
fract r = s 0 s s < 1 ∃ (z : ), r - s = z

theorem fract_eq_fract {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {r s : α} :
fract r = fract s ∃ (z : ), r - s = z

@[simp]
theorem fract_fract {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) :

theorem fract_add {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r s : α) :
∃ (z : ), fract (r + s) - fract r - fract s = z

theorem fract_mul_nat {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (r : α) (b : ) :
∃ (z : ), fract r * b - fract (r * b) = z

def ceil {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :
α →

ceil x is the smallest integer z such that x ≤ z

Equations
theorem ceil_le {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {z : } {x : α} :

theorem lt_ceil {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {x : α} {z : } :
z < x z < x

theorem ceil_le_floor_add_one {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

theorem le_ceil {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

@[simp]
theorem ceil_coe {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (z : ) :

theorem ceil_mono {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a b : α} :
a ba b

@[simp]
theorem ceil_add_int {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) (z : ) :

theorem ceil_sub_int {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) (z : ) :

theorem ceil_lt_add_one {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (x : α) :

theorem ceil_pos {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a : α} :
0 < a 0 < a

@[simp]
theorem ceil_zero {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :

theorem ceil_nonneg {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {q : α} :
0 q0 q

def nat_ceil {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :
α →

nat_ceil x is the smallest nonnegative integer n with x ≤ n. It is the same as ⌈q⌉ when q ≥ 0, otherwise it is 0.

Equations
theorem nat_ceil_le {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a : α} {n : } :

theorem lt_nat_ceil {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a : α} {n : } :
n < nat_ceil a n < a

theorem le_nat_ceil {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (a : α) :

theorem nat_ceil_mono {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a₁ a₂ : α} :
a₁ a₂nat_ceil a₁ nat_ceil a₂

@[simp]
theorem nat_ceil_coe {α : Type u_1} [linear_ordered_ring α] [floor_ring α] (n : ) :

@[simp]
theorem nat_ceil_zero {α : Type u_1} [linear_ordered_ring α] [floor_ring α] :

theorem nat_ceil_add_nat {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a : α} (a_nonneg : 0 a) (n : ) :

theorem nat_ceil_lt_add_one {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {a : α} :
0 a(nat_ceil a) < a + 1

theorem lt_of_nat_ceil_lt {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {x : α} {n : } :
nat_ceil x < nx < n

theorem le_of_nat_ceil_le {α : Type u_1} [linear_ordered_ring α] [floor_ring α] {x : α} {n : } :
nat_ceil x nx n