@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
- list.decidable_bex p (x :: xs) = dite (p x) (λ (h₁ : p x), decidable.is_true _) (λ (h₁ : ¬p x), list.decidable_bex._match_1 p x xs h₁ (list.decidable_bex p xs))
- list.decidable_bex p list.nil = decidable.is_false _
- list.decidable_bex._match_1 p x xs h₁ (decidable.is_true h₂) = decidable.is_true _
- list.decidable_bex._match_1 p x xs h₁ (decidable.is_false h₂) = decidable.is_false _
@[instance]
Equations
- list.decidable_ball p l = dite (∃ (x : α) (H : x ∈ l), ¬p x) (λ (h : ∃ (x : α) (H : x ∈ l), ¬p x), decidable.is_false _) (λ (h : ¬∃ (x : α) (H : x ∈ l), ¬p x), decidable.is_true _)
- _ = _