Sesquilinear form
This file defines a sesquilinear form over a module. The definition requires a ring antiautomorphism on the scalar ring. Basic ideas such as orthogonality are also introduced.
A sesquilinear form on an R
-module M
, is a function from M × M
to R
, that is linear in the
first argument and antilinear in the second, with respect to an antiautomorphism on R
(an
antiisomorphism from R
to R
).
Notations
Given any term S
of type sesq_form
, due to a coercion, can use the notation S x y
to
refer to the function field, ie. S x y = S.sesq x y
.
References
Tags
Sesquilinear form,
- sesq : M → M → R
- sesq_add_left : ∀ (x y z : M), c.sesq (x + y) z = c.sesq x z + c.sesq y z
- sesq_smul_left : ∀ (a : R) (x y : M), c.sesq (a • x) y = a * c.sesq x y
- sesq_add_right : ∀ (x y z : M), c.sesq x (y + z) = c.sesq x y + c.sesq x z
- sesq_smul_right : ∀ (a : R) (x y : M), c.sesq x (a • y) = opposite.unop (⇑I a) * c.sesq x y
A sesquilinear form over a module
Equations
- sesq_form.add_comm_group = {add := λ (S D : sesq_form R M I), {sesq := λ (x y : M), ⇑S x y + ⇑D x y, sesq_add_left := _, sesq_smul_left := _, sesq_add_right := _, sesq_smul_right := _}, add_assoc := _, zero := {sesq := λ (x y : M), 0, sesq_add_left := _, sesq_smul_left := _, sesq_add_right := _, sesq_smul_right := _}, zero_add := _, add_zero := _, neg := λ (S : sesq_form R M I), {sesq := λ (x y : M), -S.sesq x y, sesq_add_left := _, sesq_smul_left := _, sesq_add_right := _, sesq_smul_right := _}, add_left_neg := _, add_comm := _}
Equations
- sesq_form.inhabited = {default := 0}
Equations
- sesq_form.to_module = {to_distrib_mul_action := {to_mul_action := {to_has_scalar := {smul := λ (c : R) (S : sesq_form R M J), {sesq := λ (x y : M), c * ⇑S x y, sesq_add_left := _, sesq_smul_left := _, sesq_add_right := _, sesq_smul_right := _}}, one_smul := _, mul_smul := _}, smul_add := _, smul_zero := _}, add_smul := _, zero_smul := _}
The proposition that a sesquilinear form is reflexive
The proposition that a sesquilinear form is symmetric
Equations
- sym_sesq_form.is_sym S = ∀ (x y : M), opposite.unop (⇑I (⇑S x y)) = ⇑S y x
The proposition that a sesquilinear form is alternating
Equations
- alt_sesq_form.is_alt S = ∀ (x : M), ⇑S x x = 0