(Pre)images of intervals
In this file we prove a bunch of trivial lemmas like “if we add a to all points of [b, c],
then we get [a + b, a + c]”. For the functions x ↦ x ± a, x ↦ a ± x, and x ↦ -x we prove
lemmas about preimages and images of all intervals. We also prove a few lemmas about images under
x ↦ a * x, x ↦ x * a and x ↦ x⁻¹.
Preimages under x ↦ a + x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Preimages under x ↦ x + a
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Preimages under x ↦ -x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Preimages under x ↦ x - a
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Preimages under x ↦ a - x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Images under x ↦ a + x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Images under x ↦ x + a
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Images under x ↦ -x
Images under x ↦ a - x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Images under x ↦ x - a
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Multiplication and inverse in a field
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
set.preimage_const_mul_Ioo_of_neg
{k : Type u}
[linear_ordered_field k]
(a b : k)
{c : k} :
@[simp]
theorem
set.preimage_const_mul_Ioc_of_neg
{k : Type u}
[linear_ordered_field k]
(a b : k)
{c : k} :
@[simp]
theorem
set.preimage_const_mul_Ico_of_neg
{k : Type u}
[linear_ordered_field k]
(a b : k)
{c : k} :
@[simp]
theorem
set.preimage_const_mul_Icc_of_neg
{k : Type u}
[linear_ordered_field k]
(a b : k)
{c : k} :
theorem
set.image_mul_left_Icc'
{k : Type u}
[linear_ordered_field k]
{a : k}
(h : 0 < a)
(b c : k) :
The image under inv of Ioo 0 a is Ioi a⁻¹.