mathlib documentation

logic.​unique

logic.​unique

theorem unique.​ext {α : Sort u} (x y : unique α) :

theorem unique.​ext_iff {α : Sort u} (x y : unique α) :

@[instance]

Equations
@[instance]
def fin.​unique  :

Equations
@[instance]
def unique.​inhabited {α : Sort u} [unique α] :

Equations
theorem unique.​eq_default {α : Sort u} [unique α] (a : α) :

theorem unique.​default_eq {α : Sort u} [unique α] (a : α) :

@[instance]
def unique.​subsingleton {α : Sort u} [unique α] :

Equations
theorem unique.​forall_iff {α : Sort u} [unique α] {p : α → Prop} :
(∀ (a : α), p a) p (inhabited.default α)

theorem unique.​exists_iff {α : Sort u} [unique α] {p : α → Prop} :

theorem unique.​subsingleton_unique' {α : Sort u} (h₁ h₂ : unique α) :
h₁ = h₂

@[instance]

Equations
def function.​surjective.​unique {α : Sort u} {β : Sort v} {f : α → β} (hf : function.surjective f) [unique α] :

If the domain of a surjective function is a singleton, then the codomain is a singleton as well.

Equations
theorem function.​injective.​comap_subsingleton {α : Sort u} {β : Sort v} {f : α → β} (hf : function.injective f) [subsingleton β] :

If the codomain of an injective function is a subsingleton, then the domain is a subsingleton as well.

theorem nonempty_unique_or_exists_ne {α : Sort u} (x : α) :
nonempty (unique α) ∃ (y : α), y x

theorem subsingleton_or_exists_ne {α : Sort u} (x : α) :
subsingleton α ∃ (y : α), y x