mathlib documentation

group_theory.​submonoid.​membership

group_theory.​submonoid.​membership

Submonoids: membership criteria

In this file we prove various facts about membership in a submonoid:

Tags

submonoid, submonoids

theorem add_submonoid.​list_sum_mem {M : Type u_1} [add_monoid M] (S : add_submonoid M) {l : list M} :
(∀ (x : M), x lx S)l.sum S

Sum of a list of elements in an add_submonoid is in the add_submonoid.

theorem submonoid.​list_prod_mem {M : Type u_1} [monoid M] (S : submonoid M) {l : list M} :
(∀ (x : M), x lx S)l.prod S

Product of a list of elements in a submonoid is in the submonoid.

theorem add_submonoid.​multiset_sum_mem {M : Type u_1} [add_comm_monoid M] (S : add_submonoid M) (m : multiset M) :
(∀ (a : M), a ma S)m.sum S

Sum of a multiset of elements in an add_submonoid of an add_comm_monoid is in the add_submonoid.

theorem submonoid.​multiset_prod_mem {M : Type u_1} [comm_monoid M] (S : submonoid M) (m : multiset M) :
(∀ (a : M), a ma S)m.prod S

Product of a multiset of elements in a submonoid of a comm_monoid is in the submonoid.

theorem add_submonoid.​sum_mem {M : Type u_1} [add_comm_monoid M] (S : add_submonoid M) {ι : Type u_2} {t : finset ι} {f : ι → M} :
(∀ (c : ι), c tf c S)t.sum (λ (c : ι), f c) S

Sum of elements in an add_submonoid of an add_comm_monoid indexed by a finset is in the add_submonoid.

theorem submonoid.​prod_mem {M : Type u_1} [comm_monoid M] (S : submonoid M) {ι : Type u_2} {t : finset ι} {f : ι → M} :
(∀ (c : ι), c tf c S)t.prod (λ (c : ι), f c) S

Product of elements of a submonoid of a comm_monoid indexed by a finset is in the submonoid.

theorem submonoid.​pow_mem {M : Type u_1} [monoid M] (S : submonoid M) {x : M} (hx : x S) (n : ) :
x ^ n S

theorem add_submonoid.​mem_supr_of_directed {M : Type u_1} [add_monoid M] {ι : Sort u_2} [hι : nonempty ι] {S : ι → add_submonoid M} (hS : directed has_le.le S) {x : M} :
(x ⨆ (i : ι), S i) ∃ (i : ι), x S i

theorem submonoid.​mem_supr_of_directed {M : Type u_1} [monoid M] {ι : Sort u_2} [hι : nonempty ι] {S : ι → submonoid M} (hS : directed has_le.le S) {x : M} :
(x ⨆ (i : ι), S i) ∃ (i : ι), x S i

theorem submonoid.​coe_supr_of_directed {M : Type u_1} [monoid M] {ι : Sort u_2} [nonempty ι] {S : ι → submonoid M} :
directed has_le.le S((⨆ (i : ι), S i) = ⋃ (i : ι), (S i))

theorem add_submonoid.​coe_supr_of_directed {M : Type u_1} [add_monoid M] {ι : Sort u_2} [nonempty ι] {S : ι → add_submonoid M} :
directed has_le.le S((⨆ (i : ι), S i) = ⋃ (i : ι), (S i))

theorem add_submonoid.​mem_Sup_of_directed_on {M : Type u_1} [add_monoid M] {S : set (add_submonoid M)} (Sne : S.nonempty) (hS : directed_on has_le.le S) {x : M} :
x has_Sup.Sup S ∃ (s : add_submonoid M) (H : s S), x s

theorem submonoid.​mem_Sup_of_directed_on {M : Type u_1} [monoid M] {S : set (submonoid M)} (Sne : S.nonempty) (hS : directed_on has_le.le S) {x : M} :
x has_Sup.Sup S ∃ (s : submonoid M) (H : s S), x s

theorem submonoid.​coe_Sup_of_directed_on {M : Type u_1} [monoid M] {S : set (submonoid M)} :
S.nonemptydirected_on has_le.le S((has_Sup.Sup S) = ⋃ (s : submonoid M) (H : s S), s)

theorem add_submonoid.​coe_Sup_of_directed_on {M : Type u_1} [add_monoid M] {S : set (add_submonoid M)} :
S.nonemptydirected_on has_le.le S((has_Sup.Sup S) = ⋃ (s : add_submonoid M) (H : s S), s)

theorem add_submonoid.​mem_sup_left {M : Type u_1} [add_monoid M] {S T : add_submonoid M} {x : M} :
x Sx S T

theorem submonoid.​mem_sup_left {M : Type u_1} [monoid M] {S T : submonoid M} {x : M} :
x Sx S T

theorem submonoid.​mem_sup_right {M : Type u_1} [monoid M] {S T : submonoid M} {x : M} :
x Tx S T

theorem add_submonoid.​mem_sup_right {M : Type u_1} [add_monoid M] {S T : add_submonoid M} {x : M} :
x Tx S T

theorem submonoid.​mem_supr_of_mem {M : Type u_1} [monoid M] {ι : Type u_2} {S : ι → submonoid M} (i : ι) {x : M} :
x S ix supr S

theorem add_submonoid.​mem_supr_of_mem {M : Type u_1} [add_monoid M] {ι : Type u_2} {S : ι → add_submonoid M} (i : ι) {x : M} :
x S ix supr S

theorem submonoid.​mem_Sup_of_mem {M : Type u_1} [monoid M] {S : set (submonoid M)} {s : submonoid M} (hs : s S) {x : M} :
x sx has_Sup.Sup S

theorem add_submonoid.​mem_Sup_of_mem {M : Type u_1} [add_monoid M] {S : set (add_submonoid M)} {s : add_submonoid M} (hs : s S) {x : M} :
x sx has_Sup.Sup S

theorem submonoid.​closure_singleton_eq {M : Type u_1} [monoid M] (x : M) :

theorem submonoid.​mem_closure_singleton {M : Type u_1} [monoid M] {x y : M} :
y submonoid.closure {x} ∃ (n : ), x ^ n = y

The submonoid generated by an element of a monoid equals the set of natural number powers of the element.

theorem submonoid.​mem_closure_singleton_self {M : Type u_1} [monoid M] {y : M} :

theorem add_submonoid.​exists_list_of_mem_closure {M : Type u_1} [add_monoid M] {s : set M} {x : M} :
x add_submonoid.closure s(∃ (l : list M) (hl : ∀ (y : M), y ly s), l.sum = x)

theorem submonoid.​exists_list_of_mem_closure {M : Type u_1} [monoid M] {s : set M} {x : M} :
x submonoid.closure s(∃ (l : list M) (hl : ∀ (y : M), y ly s), l.prod = x)

def submonoid.​powers {N : Type u_3} [monoid N] :
N → submonoid N

The submonoid generated by an element.

Equations
@[simp]
theorem submonoid.​mem_powers {N : Type u_3} [monoid N] (n : N) :

theorem submonoid.​powers_eq_closure {N : Type u_3} [monoid N] (n : N) :

theorem submonoid.​powers_subset {N : Type u_3} [monoid N] {n : N} {P : submonoid N} :

theorem submonoid.​sup_eq_range {N : Type u_3} [comm_monoid N] (s t : submonoid N) :

theorem add_submonoid.​mem_sup {N : Type u_3} [add_comm_monoid N] {s t : add_submonoid N} {x : N} :
x s t ∃ (y : N) (H : y s) (z : N) (H : z t), y + z = x

theorem submonoid.​mem_sup {N : Type u_3} [comm_monoid N] {s t : submonoid N} {x : N} :
x s t ∃ (y : N) (H : y s) (z : N) (H : z t), y * z = x

theorem add_submonoid.​nsmul_mem {A : Type u_2} [add_monoid A] (S : add_submonoid A) {x : A} (hx : x S) (n : ) :
n •ℕ x S

theorem add_submonoid.​mem_closure_singleton {A : Type u_2} [add_monoid A] {x y : A} :
y add_submonoid.closure {x} ∃ (n : ), n •ℕ x = y

The add_submonoid generated by an element of an add_monoid equals the set of natural number multiples of the element.

def add_submonoid.​multiples {A : Type u_2} [add_monoid A] :

The additive submonoid generated by an element.

Equations
@[simp]
theorem add_submonoid.​mem_multiples {A : Type u_2} [add_monoid A] (x : A) :

theorem add_submonoid.​multiples_subset {A : Type u_2} [add_monoid A] {x : A} {P : add_submonoid A} :