mathlib documentation

category_theory.​limits.​shapes.​products

category_theory.​limits.​shapes.​products

def category_theory.​limits.​fan {β : Type v} {C : Type u} [category_theory.category C] :
(β → C)Type (max u v)

def category_theory.​limits.​cofan {β : Type v} {C : Type u} [category_theory.category C] :
(β → C)Type (max u v)

def category_theory.​limits.​fan.​mk {β : Type v} {C : Type u} [category_theory.category C] {f : β → C} {P : C} :
(Π (b : β), P f b)category_theory.limits.fan f

Equations
def category_theory.​limits.​cofan.​mk {β : Type v} {C : Type u} [category_theory.category C] {f : β → C} {P : C} :
(Π (b : β), f b P)category_theory.limits.cofan f

Equations
@[simp]
theorem category_theory.​limits.​fan.​mk_π_app {β : Type v} {C : Type u} [category_theory.category C] {f : β → C} {P : C} (p : Π (b : β), P f b) (b : β) :

@[simp]
theorem category_theory.​limits.​cofan.​mk_π_app {β : Type v} {C : Type u} [category_theory.category C] {f : β → C} {P : C} (p : Π (b : β), f b P) (b : β) :

def category_theory.​limits.​has_product {β : Type v} {C : Type u} [category_theory.category C] :
(β → C)Type (max u v)

An abbreviation for has_limit (discrete.functor f).

def category_theory.​limits.​has_coproduct {β : Type v} {C : Type u} [category_theory.category C] :
(β → C)Type (max u v)

An abbreviation for has_colimit (discrete.functor f).

def category_theory.​limits.​has_products_of_shape (β : Type v) (C : Type u_1) [category_theory.category C] :
Type (max u_1 v)

An abbreviation for has_limits_of_shape (discrete f).

def category_theory.​limits.​has_coproducts_of_shape (β : Type v) (C : Type u_1) [category_theory.category C] :
Type (max u_1 v)

An abbreviation for has_colimits_of_shape (discrete f).

def category_theory.​limits.​pi_obj {β : Type v} {C : Type u} [category_theory.category C] (f : β → C) [category_theory.limits.has_product f] :
C

pi_obj f computes the product of a family of elements f. (It is defined as an abbreviation for limit (discrete.functor f), so for most facts about pi_obj f, you will just use general facts about limits.)

sigma_obj f computes the coproduct of a family of elements f. (It is defined as an abbreviation for colimit (discrete.functor f), so for most facts about sigma_obj f, you will just use general facts about colimits.)

def category_theory.​limits.​pi.​π {β : Type v} {C : Type u} [category_theory.category C] (f : β → C) [category_theory.limits.has_product f] (b : β) :
f f b

def category_theory.​limits.​sigma.​ι {β : Type v} {C : Type u} [category_theory.category C] (f : β → C) [category_theory.limits.has_coproduct f] (b : β) :
f b f

def category_theory.​limits.​pi.​lift {β : Type v} {C : Type u} [category_theory.category C] {f : β → C} [category_theory.limits.has_product f] {P : C} :
(Π (b : β), P f b)(P f)

def category_theory.​limits.​sigma.​desc {β : Type v} {C : Type u} [category_theory.category C] {f : β → C} [category_theory.limits.has_coproduct f] {P : C} :
(Π (b : β), f b P)( f P)

def category_theory.​limits.​pi.​map {β : Type v} {C : Type u} [category_theory.category C] {f g : β → C} [category_theory.limits.has_products_of_shape β C] :
(Π (b : β), f b g b)( f g)

def category_theory.​limits.​sigma.​map {β : Type v} {C : Type u} [category_theory.category C] {f g : β → C} [category_theory.limits.has_coproducts_of_shape β C] :
(Π (b : β), f b g b)( f g)

def category_theory.​limits.​has_products (C : Type u) [category_theory.category C] :
Type (max (v+1) u v)

An abbreviation for Π J, has_limits_of_shape (discrete J) C

def category_theory.​limits.​has_coproducts (C : Type u) [category_theory.category C] :
Type (max (v+1) u v)

An abbreviation for Π J, has_colimits_of_shape (discrete J) C