mathlib documentation

category_theory.​natural_isomorphism

category_theory.​natural_isomorphism

@[simp]
def category_theory.​iso.​app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :
F.obj X G.obj X

The application of a natural isomorphism to an object. We put this definition in a different namespace, so that we can use α.app

Equations
@[simp]
theorem category_theory.​iso.​hom_inv_id_app_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) {X' : D} (f' : F.obj X X') :
α.hom.app X α.inv.app X f' = f'

@[simp]
theorem category_theory.​iso.​hom_inv_id_app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :
α.hom.app X α.inv.app X = 𝟙 (F.obj X)

@[simp]
theorem category_theory.​iso.​inv_hom_id_app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :
α.inv.app X α.hom.app X = 𝟙 (G.obj X)

@[simp]
theorem category_theory.​iso.​inv_hom_id_app_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) {X' : D} (f' : G.obj X X') :
α.inv.app X α.hom.app X f' = f'

@[simp]
theorem category_theory.​nat_iso.​trans_app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G H : C D} (α : F G) (β : G H) (X : C) :
≪≫ β).app X = α.app X ≪≫ β.app X

theorem category_theory.​nat_iso.​app_hom {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :
(α.app X).hom = α.hom.app X

theorem category_theory.​nat_iso.​app_inv {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :
(α.app X).inv = α.inv.app X

@[instance]
def category_theory.​nat_iso.​hom_app_is_iso {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :

Equations
@[instance]
def category_theory.​nat_iso.​inv_app_is_iso {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) (X : C) :

Equations

Unfortunately we need a separate set of cancellation lemmas for components of natural isomorphisms, because the simp normal form is α.hom.app X, rather than α.app.hom X.

(With the later, the morphism would be visibly part of an isomorphism, so general lemmas about isomorphisms would apply.)

In the future, we should consider a redesign that changes this simp norm form, but for now it breaks too many proofs.

@[simp]
theorem category_theory.​nat_iso.​cancel_nat_iso_hom_left {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) {X : C} {Z : D} (g g' : G.obj X Z) :
α.hom.app X g = α.hom.app X g' g = g'

@[simp]
theorem category_theory.​nat_iso.​cancel_nat_iso_inv_left {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) {X : C} {Z : D} (g g' : F.obj X Z) :
α.inv.app X g = α.inv.app X g' g = g'

@[simp]
theorem category_theory.​nat_iso.​cancel_nat_iso_hom_right {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) {X : D} {Y : C} (f f' : X F.obj Y) :
f α.hom.app Y = f' α.hom.app Y f = f'

@[simp]
theorem category_theory.​nat_iso.​cancel_nat_iso_inv_right {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) {X : D} {Y : C} (f f' : X G.obj Y) :
f α.inv.app Y = f' α.inv.app Y f = f'

@[simp]
theorem category_theory.​nat_iso.​cancel_nat_iso_hom_right_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) {W X X' : D} {Y : C} (f : W X) (g : X F.obj Y) (f' : W X') (g' : X' F.obj Y) :
f g α.hom.app Y = f' g' α.hom.app Y f g = f' g'

@[simp]
theorem category_theory.​nat_iso.​cancel_nat_iso_inv_right_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (α : F G) {W X X' : D} {Y : C} (f : W X) (g : X G.obj Y) (f' : W X') (g' : X' G.obj Y) :
f g α.inv.app Y = f' g' α.inv.app Y f g = f' g'

theorem category_theory.​nat_iso.​naturality_1 {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} {X Y : C} (α : F G) (f : X Y) :
α.inv.app X F.map f α.hom.app Y = G.map f

theorem category_theory.​nat_iso.​naturality_2 {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} {X Y : C} (α : F G) (f : X Y) :
α.hom.app X G.map f α.inv.app Y = F.map f

def category_theory.​nat_iso.​of_components {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (app : Π (X : C), F.obj X G.obj X) :
(∀ {X Y : C} (f : X Y), F.map f (app Y).hom = (app X).hom G.map f)(F G)

Equations
@[simp]
theorem category_theory.​nat_iso.​of_components.​app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (app' : Π (X : C), F.obj X G.obj X) (naturality : ∀ {X Y : C} (f : X Y), F.map f (app' Y).hom = (app' X).hom G.map f) (X : C) :
(category_theory.nat_iso.of_components app' naturality).app X = app' X

@[simp]
theorem category_theory.​nat_iso.​of_components.​hom_app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (app : Π (X : C), F.obj X G.obj X) (naturality : ∀ {X Y : C} (f : X Y), F.map f (app Y).hom = (app X).hom G.map f) (X : C) :

@[simp]
theorem category_theory.​nat_iso.​of_components.​inv_app {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} (app : Π (X : C), F.obj X G.obj X) (naturality : ∀ {X Y : C} (f : X Y), F.map f (app Y).hom = (app X).hom G.map f) (X : C) :

def category_theory.​nat_iso.​hcomp {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {E : Type u₃} [category_theory.category E] {F G : C D} {H I : D E} :
(F G)(H I)(F H G I)

Equations