mathlib documentation

ring_theory.​ideal.​over

ring_theory.​ideal.​over

Ideals over/under ideals

This file concerns ideals lying over other ideals. Let f : R →+* S be a ring homomorphism (typically a ring extension), I an ideal of R and J an ideal of S. We say J lies over I (and I under J) if I is the f-preimage of J. This is expressed here by writing I = J.comap f.

Implementation notes

The proofs of the comap_ne_bot and comap_lt_comap families use an approach specific for their situation: we construct an element in I.comap f from the coefficients of a minimal polynomial. Once mathlib has more material on the localization at a prime ideal, the results can be proven using more general going-up/going-down theory.

theorem ideal.​coeff_zero_mem_comap_of_root_mem_of_eval_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [comm_ring S] {f : R →+* S} {I : ideal S} {r : S} (hr : r I) {p : polynomial R} :

theorem ideal.​coeff_zero_mem_comap_of_root_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [comm_ring S] {f : R →+* S} {I : ideal S} {r : S} (hr : r I) {p : polynomial R} :

theorem ideal.​exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [comm_ring S] {f : R →+* S} {I : ideal S} {r : S} (r_non_zero_divisor : ∀ {x : S}, x * r = 0x = 0) (hr : r I) {p : polynomial R} :
p 0polynomial.eval₂ f r p = 0(∃ (i : ), p.coeff i 0 p.coeff i ideal.comap f I)

theorem ideal.​exists_coeff_ne_zero_mem_comap_of_root_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {f : R →+* S} {I : ideal S} {r : S} (r_ne_zero : r 0) (hr : r I) {p : polynomial R} :
p 0polynomial.eval₂ f r p = 0(∃ (i : ), p.coeff i 0 p.coeff i ideal.comap f I)

theorem ideal.​exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {f : R →+* S} {I J : ideal S} [I.is_prime] (hIJ : I J) {r : S} (hr : r J \ I) {p : polynomial R} :

theorem ideal.​comap_ne_bot_of_root_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {f : R →+* S} {I : ideal S} {r : S} (r_ne_zero : r 0) (hr : r I) {p : polynomial R} :
p 0polynomial.eval₂ f r p = 0ideal.comap f I

theorem ideal.​comap_lt_comap_of_root_mem_sdiff {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {f : R →+* S} {I J : ideal S} [I.is_prime] (hIJ : I J) {r : S} (hr : r J \ I) {p : polynomial R} :

theorem ideal.​comap_ne_bot_of_algebraic_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {I : ideal S} [algebra R S] {x : S} :
x 0x Iis_algebraic R xideal.comap (algebra_map R S) I

theorem ideal.​comap_ne_bot_of_integral_mem {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {I : ideal S} [algebra R S] [nontrivial R] {x : S} :
x 0x Iis_integral R xideal.comap (algebra_map R S) I

theorem ideal.​mem_of_one_mem {S : Type u_2} [integral_domain S] {I : ideal S} (h : 1 I) (x : S) :
x I

theorem ideal.​comap_lt_comap_of_integral_mem_sdiff {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] {I J : ideal S} [algebra R S] [hI : I.is_prime] (hIJ : I J) {x : S} :

theorem ideal.​is_maximal_of_is_integral_of_is_maximal_comap {R : Type u_1} [comm_ring R] {S : Type u_2} [integral_domain S] [algebra R S] (hRS : ∀ (x : S), is_integral R x) (I : ideal S) [I.is_prime] :