@[class]
    - lift : a → b
 
Can perform a lifting operation ↑a.
@[class]
    - lift : a → b
 
Auxiliary class that contains the transitive closure of has_lift.
Instances
@[class]
    - coe : a → b
 
Instances
- coe_bool_to_Prop
 - coe_subtype
 - string_to_name
 - nat_to_format
 - string_to_format
 - expr.has_coe
 - tactic.opt_to_tac
 - tactic.ex_to_tac
 - lean.parser.has_coe
 - smt_tactic.has_coe
 - widget.component.has_coe
 - widget.html.to_string_coe
 - widget.html.list_coe
 - list.bin_tree_to_list
 - int.has_coe
 - native.float.of_nat_coe
 - native.float.of_int_coe
 - units.has_coe
 - add_units.has_coe
 - monoid_hom.has_coe
 - add_monoid_hom.has_coe
 - multiset.has_coe
 - fin.fin_to_nat
 - rel_iso.has_coe
 - nat.primes.coe_nat
 - coe_pnat_nat
 - nat.primes.coe_pnat
 - tactic.abel.has_coe
 - tactic.ring.has_coe
 - linarith.preprocessor_to_gb_preprocessor
 - linarith.global_preprocessor_to_gb_preprocessor
 - submonoid.has_coe
 - add_submonoid.has_coe
 - subgroup.has_coe
 - add_subgroup.has_coe
 - ring_equiv.has_coe_to_mul_equiv
 - ring_equiv.has_coe_to_add_equiv
 - ring_equiv.has_coe_to_ring_hom
 - linear_equiv.has_coe
 - Module.has_coe
 - con.to_submonoid
 - add_con.to_add_submonoid
 - subsemiring.has_coe
 - alg_hom.coe_ring_hom
 - alg_hom.coe_monoid_hom
 - alg_hom.coe_add_monoid_hom
 - alg_equiv.has_coe_to_ring_equiv
 - alg_equiv.has_coe_to_alg_hom
 - subalgebra.has_coe
 - subalgebra.coe_to_submodule
 - linear_map.has_coe
 - Algebra.has_coe
 - initial_seg.has_coe
 - principal_seg.has_coe
 - principal_seg.has_coe_initial_seg
 - roption.has_coe
 - pfun.has_coe
 - enat.has_coe
 - lie_algebra.has_coe
 - lie_algebra.equiv.has_coe_to_lie_hom
 - lie_algebra.equiv.has_coe_to_linear_equiv
 - set.has_coe
 - lie_subalgebra_coe_submodule
 - lie_submodule_coe_submodule
 - seq.coe_list
 - seq.coe_stream
 - seq.coe_lazy_list
 - seq1.coe_seq
 - generalized_continued_fraction.pair.has_coe_to_generalized_continued_fraction_pair
 - generalized_continued_fraction.has_coe_to_generalized_continued_fraction
 - simple_continued_fraction.has_coe_to_generalized_continued_fraction
 - continued_fraction.has_coe_to_simple_continued_fraction
 - continued_fraction.has_coe_to_generalized_continued_fraction
 - generalized_continued_fraction.int_fract_pair.has_coe_to_int_fract_pair
 - free_ring.has_coe
 - distrib_mul_action_hom.has_coe
 - distrib_mul_action_hom.has_coe'
 - mul_semiring_action_hom.has_coe
 - mul_semiring_action_hom.has_coe'
 - topological_space.opens.has_coe
 - algebraic_geometry.PresheafedSpace.coe_to_Top
 - complex.has_coe
 - affine_subspace.has_coe
 - nnreal.has_coe
 - ennreal.has_coe
 - continuous_linear_map.has_coe
 - continuous_linear_equiv.has_coe
 - real.angle.angle.has_coe
 - convex_cone.has_coe
 - snum.has_coe
 - int.snum_coe
 - valuation.has_coe
 - padic_int.has_coe
 - prime_multiset.coe_nat
 - prime_multiset.coe_pnat
 - prime_multiset.coe_multiset_pnat_nat
 - ereal.has_coe
 - wseq.coe_seq
 - wseq.coe_list
 - wseq.coe_stream
 - gaussian_int.has_coe
 - matrix.special_linear_group.coe_matrix
 - quadratic_form.isometry.has_coe
 - ring_invo.has_coe_to_ring_equiv
 - measure_theory.l1.has_coe
 - measure_theory.l1.simple_func.has_coe
 - derivation.has_coe_to_linear_map
 - ring.fractional_ideal.has_coe
 - ring.fractional_ideal.coe_to_fractional_ideal
 - mv_polynomial.coe_to_mv_power_series
 - polynomial.coe_to_power_series
 - pgame.has_coe
 - pSet.has_coe
 - Class.has_coe
 - old_conv.has_coe
 - efmt.has_coe
 - efmt.coe_format
 
@[class]
    - coe : a → b
 
Auxiliary class that contains the transitive closure of has_coe.
Instances
- con.has_coe_t
 - add_con.has_coe_t
 - coe_trans
 - nat.cast_coe
 - int.cast_coe
 - rat.cast_coe
 - pos_num_coe
 - num_nat_coe
 - znum_coe
 - zmod.has_coe_t
 - coe_base
 - coe_option
 - with_bot.has_coe_t
 - with_top.has_coe_t
 - with_one.has_coe_t
 - with_zero.has_coe_t
 - quotient_group.has_coe_t
 - quotient_add_group.has_coe_t
 - submodule.has_coe_t
 - computation.has_coe_t
 - filter.germ.has_coe_t
 - hyperreal.has_coe_t
 - adjoin_root.adjoin_root.has_coe_t
 - uniform_space.completion.has_coe_t
 - open_subgroup.has_coe_set
 - open_add_subgroup.has_coe_set
 - open_subgroup.has_coe_subgroup
 - open_add_subgroup.has_coe_add_subgroup
 - open_subgroup.has_coe_opens
 - open_add_subgroup.has_coe_opens
 
@[class]
    - F : a → Sort ?
 - coe : Π (x : a), has_coe_to_fun.F x
 
Instances
- lie_group_morphism.has_coe_to_fun
 - lie_add_group_morphism.has_coe_to_fun
 - coe_fn_trans
 - expr.has_coe_to_fun
 - widget.tc.cfn
 - applicative_transformation.has_coe_to_fun
 - monoid_hom.has_coe_to_fun
 - add_monoid_hom.has_coe_to_fun
 - monoid.End.has_coe_to_fun
 - add_monoid.End.has_coe_to_fun
 - ring_hom.has_coe_to_fun
 - equiv.has_coe_to_fun
 - function.has_coe_to_fun
 - rel_embedding.has_coe_to_fun
 - rel_iso.has_coe_to_fun
 - mul_equiv.has_coe_to_fun
 - add_equiv.has_coe_to_fun
 - tactic.abel.has_coe_to_fun
 - tactic.ring.has_coe_to_fun
 - linear_map.has_coe_to_fun
 - ring_equiv.has_coe_to_fun
 - finsupp.has_coe_to_fun
 - linear_equiv.has_coe_to_fun
 - linear_map.general_linear_group.has_coe_to_fun
 - con.has_coe_to_fun
 - add_con.has_coe_to_fun
 - alg_hom.has_coe_to_fun
 - alg_equiv.has_coe_to_fun
 - initial_seg.has_coe_to_fun
 - principal_seg.has_coe_to_fun
 - pequiv.has_coe_to_fun
 - bilin_form.has_coe_to_fun
 - dfinsupp.has_coe_to_fun
 - direct_sum.has_coe_to_fun
 - lie_algebra.has_coe_to_fun
 - lie_algebra.equiv.has_coe_to_fun
 - mul_action_hom.has_coe_to_fun
 - distrib_mul_action_hom.has_coe_to_fun
 - mul_semiring_action_hom.has_coe_to_fun
 - continuous_map.has_coe_to_fun
 - homeomorph.has_coe_to_fun
 - topological_space.opens.opens_hom_has_coe_to_fun
 - cau_seq.has_coe_to_fun
 - affine_map.has_coe_to_fun
 - continuous_linear_map.to_fun
 - continuous_linear_equiv.has_coe_to_fun
 - bounded_continuous_function.has_coe_to_fun
 - isometric.has_coe_to_fun
 - local_equiv.has_coe_to_fun
 - local_homeomorph.has_coe_to_fun
 - multilinear_map.has_coe_to_fun
 - continuous_multilinear_map.has_coe_to_fun
 - path.has_coe_to_fun
 - linear_pmap.has_coe_to_fun
 - continuous_functions.has_coe_to_fun
 - normed_space.dual.has_coe_to_fun
 - enorm.has_coe_to_fun
 - turing.has_coe_to_fun
 - cfilter.has_coe_to_fun
 - ctop.has_coe_to_fun
 - valuation.has_coe_to_fun
 - circle_deg1_lift.has_coe_to_fun
 - circle_deg1_lift.units_has_coe_to_fun
 - bundle_trivialization.has_coe_to_fun
 - model_with_corners.has_coe_to_fun
 - module.dual.has_coe_to_fun
 - matrix.special_linear_group.coe_fun
 - quadratic_form.has_coe_to_fun
 - quadratic_form.isometry.has_coe_to_fun
 - ring_invo.has_coe_to_fun
 - sesq_form.has_coe_to_fun
 - measurable_equiv.has_coe_to_fun
 - measure_theory.outer_measure.has_coe_to_fun
 - measure_theory.measure.has_coe_to_fun
 - measure_theory.simple_func.has_coe_to_fun
 - measure_theory.ae_eq_fun.has_coe_to_fun
 - measure_theory.l1.has_coe_to_fun
 - measure_theory.l1.simple_func.has_coe_to_fun
 - pmf.has_coe_to_fun
 - poly.has_coe_to_fun
 - preorder_hom.has_coe_to_fun
 - derivation.has_coe_to_fun
 - UniformSpace.has_coe_to_fun
 
@[class]
    - S : Sort ?
 - coe : a → has_coe_to_sort.S a
 
Instances
- coe_sort_trans
 - coe_sort_bool
 - set.has_coe_to_sort
 - category_theory.induced_category.has_coe_to_sort
 - category_theory.bundled.has_coe_to_sort
 - submonoid.has_coe_to_sort
 - add_submonoid.has_coe_to_sort
 - subgroup.has_coe_to_sort
 - add_subgroup.has_coe_to_sort
 - Mon.has_coe_to_sort
 - AddMon.has_coe_to_sort
 - CommMon.has_coe_to_sort
 - AddCommMon.has_coe_to_sort
 - Group.has_coe_to_sort
 - AddGroup.has_coe_to_sort
 - CommGroup.has_coe_to_sort
 - AddCommGroup.has_coe_to_sort
 - SemiRing.has_coe_to_sort
 - Ring.has_coe_to_sort
 - CommSemiRing.has_coe_to_sort
 - CommRing.has_coe_to_sort
 - submodule.has_coe_to_sort
 - Module.has_coe_to_sort
 - subsemiring.has_coe_to_sort
 - Algebra.has_coe_to_sort
 - Top.has_coe_to_sort
 - category_theory.Cat.has_coe_to_sort
 - Meas.has_coe_to_sort
 - Preorder.has_coe_to_sort
 - PartialOrder.has_coe_to_sort
 - LinearOrder.has_coe_to_sort
 - NonemptyFinLinOrd.has_coe_to_sort
 - TopCommRing.has_coe_to_sort
 - UniformSpace.has_coe_to_sort
 - CpltSepUniformSpace.has_coe_to_sort
 
Equations
Equations
Equations
Equations
@[instance]
    
def
lift_trans
    {a : Sort u₁}
    {b : Sort u₂}
    {c : Sort u₃}
    [has_lift_t b c]
    [has_lift a b] :
    
has_lift_t a c
@[instance]
    Equations
- coe_option = {coe := λ (x : a), option.some x}
 
@[class]
    - coe : a → b
 
Instances
@[instance]
    
def
coe_trans_aux
    {a : Sort u₁}
    {b : Sort u₂}
    {c : Sort u₃}
    [has_coe_t_aux b c]
    [has_coe a b] :
    has_coe_t_aux a c
Equations
- coe_trans_aux = {coe := λ (x : a), has_coe_t_aux.coe (coe_b x)}
 
@[instance]
    Equations
- coe_base_aux = {coe := coe_b _inst_1}
 
@[instance]
    Equations
- coe_fn_trans = {F := λ (x : a), has_coe_to_fun.F (has_coe_t_aux.coe x), coe := λ (x : a), ⇑(has_coe_t_aux.coe x)}
 
@[instance]
    Equations
- coe_sort_trans = {S := has_coe_to_sort.S b _inst_1, coe := λ (x : a), ↥(has_coe_t_aux.coe x)}
 
@[instance]
    Equations
- coe_to_lift = {lift := coe_t _inst_1}
 
@[instance]
    
@[instance]
    Equations
- coe_decidable_eq x = show decidable (x = bool.tt), from bool.decidable_eq x bool.tt
 
@[instance]
    Equations
- coe_subtype = {coe := subtype.val (λ (x : a), p x)}
 
@[instance]
    
def
lift_fn_range
    {a : Sort ua}
    {b₁ : Sort ub₁}
    {b₂ : Sort ub₂}
    [has_lift_t b₁ b₂] :
    has_lift (a → b₁) (a → b₂)
Equations
- lift_fn_range = {lift := λ (f : a → b₁) (x : a), ↑(f x)}
 
@[instance]
    
def
lift_fn_dom
    {a₁ : Sort ua₁}
    {a₂ : Sort ua₂}
    {b : Sort ub}
    [has_lift a₂ a₁] :
    has_lift (a₁ → b) (a₂ → b)
Equations
- lift_fn_dom = {lift := λ (f : a₁ → b) (x : a₂), f ↑x}
 
@[instance]
    
@[instance]