@[class]
- lift : a → b
Can perform a lifting operation ↑a
.
@[class]
- lift : a → b
Auxiliary class that contains the transitive closure of has_lift.
Instances
@[class]
- coe : a → b
Instances
- coe_bool_to_Prop
- coe_subtype
- string_to_name
- nat_to_format
- string_to_format
- expr.has_coe
- tactic.opt_to_tac
- tactic.ex_to_tac
- lean.parser.has_coe
- smt_tactic.has_coe
- widget.component.has_coe
- widget.html.to_string_coe
- widget.html.list_coe
- list.bin_tree_to_list
- int.has_coe
- native.float.of_nat_coe
- native.float.of_int_coe
- units.has_coe
- add_units.has_coe
- monoid_hom.has_coe
- add_monoid_hom.has_coe
- multiset.has_coe
- fin.fin_to_nat
- rel_iso.has_coe
- nat.primes.coe_nat
- coe_pnat_nat
- nat.primes.coe_pnat
- tactic.abel.has_coe
- tactic.ring.has_coe
- linarith.preprocessor_to_gb_preprocessor
- linarith.global_preprocessor_to_gb_preprocessor
- submonoid.has_coe
- add_submonoid.has_coe
- subgroup.has_coe
- add_subgroup.has_coe
- ring_equiv.has_coe_to_mul_equiv
- ring_equiv.has_coe_to_add_equiv
- ring_equiv.has_coe_to_ring_hom
- linear_equiv.has_coe
- Module.has_coe
- con.to_submonoid
- add_con.to_add_submonoid
- subsemiring.has_coe
- alg_hom.coe_ring_hom
- alg_hom.coe_monoid_hom
- alg_hom.coe_add_monoid_hom
- alg_equiv.has_coe_to_ring_equiv
- alg_equiv.has_coe_to_alg_hom
- subalgebra.has_coe
- subalgebra.coe_to_submodule
- linear_map.has_coe
- Algebra.has_coe
- initial_seg.has_coe
- principal_seg.has_coe
- principal_seg.has_coe_initial_seg
- roption.has_coe
- pfun.has_coe
- enat.has_coe
- lie_algebra.has_coe
- lie_algebra.equiv.has_coe_to_lie_hom
- lie_algebra.equiv.has_coe_to_linear_equiv
- set.has_coe
- lie_subalgebra_coe_submodule
- lie_submodule_coe_submodule
- seq.coe_list
- seq.coe_stream
- seq.coe_lazy_list
- seq1.coe_seq
- generalized_continued_fraction.pair.has_coe_to_generalized_continued_fraction_pair
- generalized_continued_fraction.has_coe_to_generalized_continued_fraction
- simple_continued_fraction.has_coe_to_generalized_continued_fraction
- continued_fraction.has_coe_to_simple_continued_fraction
- continued_fraction.has_coe_to_generalized_continued_fraction
- generalized_continued_fraction.int_fract_pair.has_coe_to_int_fract_pair
- free_ring.has_coe
- distrib_mul_action_hom.has_coe
- distrib_mul_action_hom.has_coe'
- mul_semiring_action_hom.has_coe
- mul_semiring_action_hom.has_coe'
- topological_space.opens.has_coe
- algebraic_geometry.PresheafedSpace.coe_to_Top
- complex.has_coe
- affine_subspace.has_coe
- nnreal.has_coe
- ennreal.has_coe
- continuous_linear_map.has_coe
- continuous_linear_equiv.has_coe
- real.angle.angle.has_coe
- convex_cone.has_coe
- snum.has_coe
- int.snum_coe
- valuation.has_coe
- padic_int.has_coe
- prime_multiset.coe_nat
- prime_multiset.coe_pnat
- prime_multiset.coe_multiset_pnat_nat
- ereal.has_coe
- wseq.coe_seq
- wseq.coe_list
- wseq.coe_stream
- gaussian_int.has_coe
- matrix.special_linear_group.coe_matrix
- quadratic_form.isometry.has_coe
- ring_invo.has_coe_to_ring_equiv
- measure_theory.l1.has_coe
- measure_theory.l1.simple_func.has_coe
- derivation.has_coe_to_linear_map
- ring.fractional_ideal.has_coe
- ring.fractional_ideal.coe_to_fractional_ideal
- mv_polynomial.coe_to_mv_power_series
- polynomial.coe_to_power_series
- pgame.has_coe
- pSet.has_coe
- Class.has_coe
- old_conv.has_coe
- efmt.has_coe
- efmt.coe_format
@[class]
- coe : a → b
Auxiliary class that contains the transitive closure of has_coe.
Instances
- con.has_coe_t
- add_con.has_coe_t
- coe_trans
- nat.cast_coe
- int.cast_coe
- rat.cast_coe
- pos_num_coe
- num_nat_coe
- znum_coe
- zmod.has_coe_t
- coe_base
- coe_option
- with_bot.has_coe_t
- with_top.has_coe_t
- with_one.has_coe_t
- with_zero.has_coe_t
- quotient_group.has_coe_t
- quotient_add_group.has_coe_t
- submodule.has_coe_t
- computation.has_coe_t
- filter.germ.has_coe_t
- hyperreal.has_coe_t
- adjoin_root.adjoin_root.has_coe_t
- uniform_space.completion.has_coe_t
- open_subgroup.has_coe_set
- open_add_subgroup.has_coe_set
- open_subgroup.has_coe_subgroup
- open_add_subgroup.has_coe_add_subgroup
- open_subgroup.has_coe_opens
- open_add_subgroup.has_coe_opens
@[class]
- F : a → Sort ?
- coe : Π (x : a), has_coe_to_fun.F x
Instances
- lie_group_morphism.has_coe_to_fun
- lie_add_group_morphism.has_coe_to_fun
- coe_fn_trans
- expr.has_coe_to_fun
- widget.tc.cfn
- applicative_transformation.has_coe_to_fun
- monoid_hom.has_coe_to_fun
- add_monoid_hom.has_coe_to_fun
- monoid.End.has_coe_to_fun
- add_monoid.End.has_coe_to_fun
- ring_hom.has_coe_to_fun
- equiv.has_coe_to_fun
- function.has_coe_to_fun
- rel_embedding.has_coe_to_fun
- rel_iso.has_coe_to_fun
- mul_equiv.has_coe_to_fun
- add_equiv.has_coe_to_fun
- tactic.abel.has_coe_to_fun
- tactic.ring.has_coe_to_fun
- linear_map.has_coe_to_fun
- ring_equiv.has_coe_to_fun
- finsupp.has_coe_to_fun
- linear_equiv.has_coe_to_fun
- linear_map.general_linear_group.has_coe_to_fun
- con.has_coe_to_fun
- add_con.has_coe_to_fun
- alg_hom.has_coe_to_fun
- alg_equiv.has_coe_to_fun
- initial_seg.has_coe_to_fun
- principal_seg.has_coe_to_fun
- pequiv.has_coe_to_fun
- bilin_form.has_coe_to_fun
- dfinsupp.has_coe_to_fun
- direct_sum.has_coe_to_fun
- lie_algebra.has_coe_to_fun
- lie_algebra.equiv.has_coe_to_fun
- mul_action_hom.has_coe_to_fun
- distrib_mul_action_hom.has_coe_to_fun
- mul_semiring_action_hom.has_coe_to_fun
- continuous_map.has_coe_to_fun
- homeomorph.has_coe_to_fun
- topological_space.opens.opens_hom_has_coe_to_fun
- cau_seq.has_coe_to_fun
- affine_map.has_coe_to_fun
- continuous_linear_map.to_fun
- continuous_linear_equiv.has_coe_to_fun
- bounded_continuous_function.has_coe_to_fun
- isometric.has_coe_to_fun
- local_equiv.has_coe_to_fun
- local_homeomorph.has_coe_to_fun
- multilinear_map.has_coe_to_fun
- continuous_multilinear_map.has_coe_to_fun
- path.has_coe_to_fun
- linear_pmap.has_coe_to_fun
- continuous_functions.has_coe_to_fun
- normed_space.dual.has_coe_to_fun
- enorm.has_coe_to_fun
- turing.has_coe_to_fun
- cfilter.has_coe_to_fun
- ctop.has_coe_to_fun
- valuation.has_coe_to_fun
- circle_deg1_lift.has_coe_to_fun
- circle_deg1_lift.units_has_coe_to_fun
- bundle_trivialization.has_coe_to_fun
- model_with_corners.has_coe_to_fun
- module.dual.has_coe_to_fun
- matrix.special_linear_group.coe_fun
- quadratic_form.has_coe_to_fun
- quadratic_form.isometry.has_coe_to_fun
- ring_invo.has_coe_to_fun
- sesq_form.has_coe_to_fun
- measurable_equiv.has_coe_to_fun
- measure_theory.outer_measure.has_coe_to_fun
- measure_theory.measure.has_coe_to_fun
- measure_theory.simple_func.has_coe_to_fun
- measure_theory.ae_eq_fun.has_coe_to_fun
- measure_theory.l1.has_coe_to_fun
- measure_theory.l1.simple_func.has_coe_to_fun
- pmf.has_coe_to_fun
- poly.has_coe_to_fun
- preorder_hom.has_coe_to_fun
- derivation.has_coe_to_fun
- UniformSpace.has_coe_to_fun
@[class]
- S : Sort ?
- coe : a → has_coe_to_sort.S a
Instances
- coe_sort_trans
- coe_sort_bool
- set.has_coe_to_sort
- category_theory.induced_category.has_coe_to_sort
- category_theory.bundled.has_coe_to_sort
- submonoid.has_coe_to_sort
- add_submonoid.has_coe_to_sort
- subgroup.has_coe_to_sort
- add_subgroup.has_coe_to_sort
- Mon.has_coe_to_sort
- AddMon.has_coe_to_sort
- CommMon.has_coe_to_sort
- AddCommMon.has_coe_to_sort
- Group.has_coe_to_sort
- AddGroup.has_coe_to_sort
- CommGroup.has_coe_to_sort
- AddCommGroup.has_coe_to_sort
- SemiRing.has_coe_to_sort
- Ring.has_coe_to_sort
- CommSemiRing.has_coe_to_sort
- CommRing.has_coe_to_sort
- submodule.has_coe_to_sort
- Module.has_coe_to_sort
- subsemiring.has_coe_to_sort
- Algebra.has_coe_to_sort
- Top.has_coe_to_sort
- category_theory.Cat.has_coe_to_sort
- Meas.has_coe_to_sort
- Preorder.has_coe_to_sort
- PartialOrder.has_coe_to_sort
- LinearOrder.has_coe_to_sort
- NonemptyFinLinOrd.has_coe_to_sort
- TopCommRing.has_coe_to_sort
- UniformSpace.has_coe_to_sort
- CpltSepUniformSpace.has_coe_to_sort
Equations
Equations
Equations
Equations
@[instance]
def
lift_trans
{a : Sort u₁}
{b : Sort u₂}
{c : Sort u₃}
[has_lift_t b c]
[has_lift a b] :
has_lift_t a c
@[instance]
Equations
- coe_option = {coe := λ (x : a), option.some x}
@[class]
- coe : a → b
Instances
@[instance]
def
coe_trans_aux
{a : Sort u₁}
{b : Sort u₂}
{c : Sort u₃}
[has_coe_t_aux b c]
[has_coe a b] :
has_coe_t_aux a c
Equations
- coe_trans_aux = {coe := λ (x : a), has_coe_t_aux.coe (coe_b x)}
@[instance]
Equations
- coe_base_aux = {coe := coe_b _inst_1}
@[instance]
Equations
- coe_fn_trans = {F := λ (x : a), has_coe_to_fun.F (has_coe_t_aux.coe x), coe := λ (x : a), ⇑(has_coe_t_aux.coe x)}
@[instance]
Equations
- coe_sort_trans = {S := has_coe_to_sort.S b _inst_1, coe := λ (x : a), ↥(has_coe_t_aux.coe x)}
@[instance]
Equations
- coe_to_lift = {lift := coe_t _inst_1}
@[instance]
@[instance]
Equations
- coe_decidable_eq x = show decidable (x = bool.tt), from bool.decidable_eq x bool.tt
@[instance]
Equations
- coe_subtype = {coe := subtype.val (λ (x : a), p x)}
@[instance]
def
lift_fn_range
{a : Sort ua}
{b₁ : Sort ub₁}
{b₂ : Sort ub₂}
[has_lift_t b₁ b₂] :
has_lift (a → b₁) (a → b₂)
Equations
- lift_fn_range = {lift := λ (f : a → b₁) (x : a), ↑(f x)}
@[instance]
def
lift_fn_dom
{a₁ : Sort ua₁}
{a₂ : Sort ua₂}
{b : Sort ub}
[has_lift a₂ a₁] :
has_lift (a₁ → b) (a₂ → b)
Equations
- lift_fn_dom = {lift := λ (f : a₁ → b) (x : a₂), f ↑x}
@[instance]
@[instance]