Dual vector spaces
The dual space of an R-module M is the R-module of linear maps M → R
.
Main definitions
dual R M
defines the dual space of M over R.- Given a basis for a K-vector space
V
,is_basis.to_dual
produces a map fromV
todual K V
. - Given families of vectors
e
andε
,dual_pair e ε
states that these families have the characteristic properties of a basis and a dual.
Main results
to_dual_equiv
: the dual space is linearly equivalent to the primal space.dual_pair.is_basis
anddual_pair.eq_dual
: ife
andε
form a dual pair,e
is a basis andε
is its dual basis.
Notation
We sometimes use V'
as local notation for dual K V
.
The dual space of an R-module M is the R-module of linear maps M → R
.
Equations
- module.dual R M = (M →ₗ[R] R)
Equations
Equations
- module.dual.has_coe_to_fun R M = {F := λ (x : module.dual R M), M → R, coe := linear_map.to_fun semiring.to_semimodule}
Maps a module M to the dual of the dual of M. See vector_space.erange_coe
and
vector_space.eval_equiv
.
Equations
The linear map from a vector space equipped with basis to its dual vector space, taking basis elements to corresponding dual basis elements.
Equations
- h.to_dual_flip v = h.to_dual.flip.to_fun v
Equations
- h.coord_fun i = (is_basis.eval_finsupp_at i).comp h.repr
Maps a basis for V
to a basis for the dual space.
Equations
- h.dual_basis = λ (i : ι), ⇑(h.to_dual) (B i)
A vector space is linearly equivalent to its dual space.
Equations
A vector space is linearly equivalent to the dual of its dual space.
Equations
- eval : ∀ (i j : ι), ⇑(ε i) (e j) = ite (i = j) 1 0
- total : ∀ {v : V}, (∀ (i : ι), ⇑(ε i) v = 0) → v = 0
- finite : Π (v : V), fintype ↥{i : ι | ⇑(ε i) v ≠ 0}
e
and ε
have characteristic properties of a basis and its dual
The coefficients of v
on the basis e
linear combinations of elements of e
.
This is a convenient abbreviation for finsupp.total _ V K e l
Equations
- dual_pair.lc e l = l.sum (λ (i : ι) (a : K), a • e i)
For any v : V n, \sum_{p ∈ Q n} (ε p v) • e p = v