@[class]
- compl : α → α
Set / lattice complement
Instances
@[class]
- sup : α → α → α
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_sup_left : ∀ (a b : α), a ≤ a ⊔ b
- le_sup_right : ∀ (a b : α), b ≤ a ⊔ b
- sup_le : ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1
- inf : α → α → α
- inf_le_left : ∀ (a b : α), a ⊓ b ≤ a
- inf_le_right : ∀ (a b : α), a ⊓ b ≤ b
- le_inf : ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1
- le_sup_inf : ∀ (x y z : α), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
- top : α
- le_top : ∀ (a : α), a ≤ ⊤
- bot : α
- bot_le : ∀ (a : α), ⊥ ≤ a
- compl : α → α
- sdiff : α → α → α
- inf_compl_le_bot : ∀ (x : α), x ⊓ xᶜ ≤ ⊥
- top_le_sup_compl : ∀ (x : α), ⊤ ≤ x ⊔ xᶜ
- sdiff_eq : ∀ (x y : α), x \ y = x ⊓ yᶜ
A boolean algebra is a bounded distributive lattice with a
complementation operation -
such that x ⊓ - x = ⊥
and x ⊔ - x = ⊤
.
This is a generalization of (classical) logic of propositions, or
the powerset lattice.
@[instance]
@[instance]
@[instance]
@[instance]
Equations
- boolean_algebra_Prop = {sup := bounded_distrib_lattice.sup bounded_distrib_lattice_Prop, le := bounded_distrib_lattice.le bounded_distrib_lattice_Prop, lt := bounded_distrib_lattice.lt bounded_distrib_lattice_Prop, le_refl := boolean_algebra_Prop._proof_1, le_trans := boolean_algebra_Prop._proof_2, lt_iff_le_not_le := boolean_algebra_Prop._proof_3, le_antisymm := boolean_algebra_Prop._proof_4, le_sup_left := boolean_algebra_Prop._proof_5, le_sup_right := boolean_algebra_Prop._proof_6, sup_le := boolean_algebra_Prop._proof_7, inf := bounded_distrib_lattice.inf bounded_distrib_lattice_Prop, inf_le_left := boolean_algebra_Prop._proof_8, inf_le_right := boolean_algebra_Prop._proof_9, le_inf := boolean_algebra_Prop._proof_10, le_sup_inf := boolean_algebra_Prop._proof_11, top := bounded_distrib_lattice.top bounded_distrib_lattice_Prop, le_top := boolean_algebra_Prop._proof_12, bot := bounded_distrib_lattice.bot bounded_distrib_lattice_Prop, bot_le := boolean_algebra_Prop._proof_13, compl := not, sdiff := λ (p q : Prop), p ∧ ¬q, inf_compl_le_bot := boolean_algebra_Prop._proof_14, top_le_sup_compl := boolean_algebra_Prop._proof_15, sdiff_eq := boolean_algebra_Prop._proof_16}
@[instance]
Equations
- pi.boolean_algebra = {sup := λ (a a_1 : α → β) (i : α), boolean_algebra.sup (a i) (a_1 i), le := partial_order.le pi.partial_order, lt := partial_order.lt pi.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := λ (a a_1 : α → β) (i : α), boolean_algebra.inf (a i) (a_1 i), inf_le_left := _, inf_le_right := _, le_inf := _, le_sup_inf := _, top := λ (i : α), boolean_algebra.top, le_top := _, bot := λ (i : α), boolean_algebra.bot, bot_le := _, compl := λ (a : α → β) (i : α), boolean_algebra.compl (a i), sdiff := λ (a a_1 : α → β) (i : α), boolean_algebra.sdiff (a i) (a_1 i), inf_compl_le_bot := _, top_le_sup_compl := _, sdiff_eq := _}