Recurrence Lemmas for the continuants Function of Continued Fractions.
Summary
Given a generalized continued fraction g, for all n ≥ 1, we prove that the continuants
function indeed satisfies the following recurrences:
Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂, andBₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂.
theorem
generalized_continued_fraction.continuants_aux_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp ppred pred : generalized_continued_fraction.pair K} :
theorem
generalized_continued_fraction.continuants_recurrence_aux
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp ppred pred : generalized_continued_fraction.pair K} :
theorem
generalized_continued_fraction.continuants_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp ppred pred : generalized_continued_fraction.pair K} :
Shows that Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂ and Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂.
theorem
generalized_continued_fraction.numerators_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp : generalized_continued_fraction.pair K}
{ppredA predA : K} :
g.s.nth (n + 1) = option.some gp → g.numerators n = ppredA → g.numerators (n + 1) = predA → g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
Shows that Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂.
theorem
generalized_continued_fraction.denominators_recurrence
{K : Type u_1}
{g : generalized_continued_fraction K}
{n : ℕ}
[division_ring K]
{gp : generalized_continued_fraction.pair K}
{ppredB predB : K} :
g.s.nth (n + 1) = option.some gp → g.denominators n = ppredB → g.denominators (n + 1) = predB → g.denominators (n + 2) = gp.b * predB + gp.a * ppredB
Shows that Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂.