mathlib documentation

meta.​coinductive_predicates

meta.​coinductive_predicates

theorem monotonicity.​pi {α : Sort u} {p q : α → Prop} :
(∀ (a : α), implies (p a) (q a))implies (∀ (a : α), p a) (∀ (a : α), q a)

theorem monotonicity.​imp {p p' q q' : Prop} :
implies p' q'implies q pimplies (p → p') (q → q')

theorem monotonicity.​const (p : Prop) :

theorem monotonicity.​true (p : Prop) :

theorem monotonicity.​false (p : Prop) :

theorem monotonicity.​exists {α : Sort u} {p q : α → Prop} :
(∀ (a : α), implies (p a) (q a))implies (∃ (a : α), p a) (∃ (a : α), q a)

theorem monotonicity.​and {p p' q q' : Prop} :
implies p p'implies q q'implies (p q) (p' q')

theorem monotonicity.​or {p p' q q' : Prop} :
implies p p'implies q q'implies (p q) (p' q')

theorem monotonicity.​not {p q : Prop} :
implies p qimplies (¬q) (¬p)

meta def tactic.​mono  :

Prepares coinduction proofs. This tactic constructs the coinduction invariant from the quantifiers in the current goal.

Current version: do not support mutual inductive rules