@[class]
- fail : Π {a : Type ?}, string → m a
Instances
General documentation
Additional documentation
Library
algebra
big_operators
category
Algebra
CommRing
Group
Module
Mon
continued_fractions
computation
group
homology
module
polynomial
ring
algebraic_geometry
analysis
ODE
analytic
calculus
complex
convex
normed_space
special_functions
category_theory
abelian
diagram_lemmas
adjunction
category
closed
concrete_category
limits
preserves
shapes
constructions
over
monad
monoidal
internal
pi
preadditive
products
sums
combinatorics
computability
control
bitraversable
equiv_functor
functor
monad
traversable
core
data
buffer
init
algebra
control
data
array
bool
char
fin
int
list
nat
option
ordering
rbmap
rbtree
sigma
string
subtype
sum
unsigned
meta
converter
lean
smt
widget
system
data
analysis
array
bitvec
buffer
complex
dlist
equiv
encodable
finset
finsupp
fintype
fp
int
list
matrix
multiset
nat
num
option
padics
pfunctor
multivariate
univariate
pnat
polynomial
degree
qpf
multivariate
constructions
univariate
rat
real
seq
set
intervals
setoid
sigma
stream
string
zmod
zsqrtd
deprecated
dynamics
circle
rotation_number
fixed_points
field_theory
geometry
algebra
euclidean
manifold
group_theory
perm
submonoid
linear_algebra
affine_space
char_poly
direct_sum
logic
function
measure_theory
category
meta
number_theory
order
category
filter
representation_theory
ring_theory
ideal
polynomial
valuation
set_theory
game
system
random
tactic
converter
linarith
lint
monotonicity
nth_rewrite
omega
int
nat
rewrite_all
topology
algebra
category
Top
instances
metric_space
sheaves
uniform_space