mathlib documentation

data.​qpf.​multivariate.​constructions.​sigma

data.​qpf.​multivariate.​constructions.​sigma

Dependent product and sum of QPFs are QPFs

def mvqpf.​sigma {n : } {A : Type u} :
(A → typevec nType u)typevec nType u

Dependent sum of of an n-ary functor. The sum can range over data types like or over Type.{u-1}

Equations
def mvqpf.​pi {n : } {A : Type u} :
(A → typevec nType u)typevec nType u

Dependent product of of an n-ary functor. The sum can range over data types like or over Type.{u-1}

Equations
@[instance]
def mvqpf.​sigma.​inhabited {n : } {A : Type u} (F : A → typevec nType u) {α : typevec n} [inhabited A] [inhabited (F (inhabited.default A) α)] :

Equations
@[instance]
def mvqpf.​pi.​inhabited {n : } {A : Type u} (F : A → typevec nType u) {α : typevec n} [Π (a : A), inhabited (F a α)] :

Equations
@[instance]
def mvqpf.​sigma.​mvfunctor {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] :

Equations
def mvqpf.​sigma.​P {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] :

polynomial functor representation of a dependent sum

Equations
def mvqpf.​sigma.​abs {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] ⦃α : typevec n⦄ :
(mvqpf.sigma.P F).obj αmvqpf.sigma F α

abstraction function for dependent sums

Equations
def mvqpf.​sigma.​repr {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] ⦃α : typevec n⦄ :
mvqpf.sigma F α(mvqpf.sigma.P F).obj α

representation function for dependent sums

Equations
@[instance]
def mvqpf.​sigma.​mvqpf {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] :

Equations
@[instance]
def mvqpf.​pi.​mvfunctor {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] :

Equations
def mvqpf.​pi.​P {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] :

polynomial functor representation of a dependent product

Equations
def mvqpf.​pi.​abs {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] ⦃α : typevec n⦄ :
(mvqpf.pi.P F).obj αmvqpf.pi F α

abstraction function for dependent products

Equations
def mvqpf.​pi.​repr {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] ⦃α : typevec n⦄ :
mvqpf.pi F α(mvqpf.pi.P F).obj α

representation function for dependent products

Equations
@[instance]
def mvqpf.​pi.​mvqpf {n : } {A : Type u} (F : A → typevec nType u) [Π (α : A), mvfunctor (F α)] [Π (α : A), mvqpf (F α)] :

Equations