mathlib documentation

representation_theory.​maschke

representation_theory.​maschke

Maschke's theorem

We prove Maschke's theorem for finite groups, in the formulation that every submodule of a k[G] module has a complement, when k is a field with ¬(ring_char k ∣ fintype.card G).

We do the core computation in greater generality. For any [comm_ring k] in which [invertible (fintype.card G : k)], and a k[G]-linear map i : V → W which admits a k-linear retraction π, we produce a k[G]-linear retraction by taking the average over G of the conjugates of π.

Future work

It's not so far to give the usual statement, that every finite dimensional representation of a finite group is semisimple (i.e. a direct sum of irreducibles).

We now do the key calculation in Maschke's theorem.

Given V → W, an inclusion of k[G] modules,, assume we have some retraction π (i.e. ∀ v, π (i v) = v), just as a k-linear map. (When k is a field, this will be available cheaply, by choosing a basis.)

We now construct a retraction of the inclusion as a k[G]-linear map, by the formula $$ \frac{1}{|G|} \sum_{g \mem G} g⁻¹ • π(g • -). $$

We define the conjugate of π by g, as a k-linear map.

Equations
theorem conjugate_i {k : Type u} [comm_ring k] {G : Type u} [group G] {V : Type u} [add_comm_group V] [module (monoid_algebra k G) V] {W : Type u} [add_comm_group W] [module (monoid_algebra k G) W] (π : semimodule.restrict_scalars k (monoid_algebra k G) W →ₗ[k] semimodule.restrict_scalars k (monoid_algebra k G) V) (i : V →ₗ[monoid_algebra k G] W) (h : ∀ (v : V), π (i v) = v) (g : G) (v : V) :
(conjugate π g) (i v) = v

The sum of the conjugates of π by each element g : G, as a k-linear map.

(We postpone dividing by the size of the group as long as possible.)

Equations

In fact, the sum over g : G of the conjugate of π by g is a k[G]-linear map.

Equations
def equivariant_projection {k : Type u} [comm_ring k] {G : Type u} [group G] {V : Type u} [add_comm_group V] [module (monoid_algebra k G) V] {W : Type u} [add_comm_group W] [module (monoid_algebra k G) W] (π : semimodule.restrict_scalars k (monoid_algebra k G) W →ₗ[k] semimodule.restrict_scalars k (monoid_algebra k G) V) [fintype G] [inv : invertible (fintype.card G)] :

We construct our k[G]-linear retraction of i as $$ \frac{1}{|G|} \sum_{g \mem G} g⁻¹ • π(g • -). $$

Equations
theorem equivariant_projection_condition {k : Type u} [comm_ring k] {G : Type u} [group G] {V : Type u} [add_comm_group V] [module (monoid_algebra k G) V] {W : Type u} [add_comm_group W] [module (monoid_algebra k G) W] (π : semimodule.restrict_scalars k (monoid_algebra k G) W →ₗ[k] semimodule.restrict_scalars k (monoid_algebra k G) V) (i : V →ₗ[monoid_algebra k G] W) (h : ∀ (v : V), π (i v) = v) [fintype G] [inv : invertible (fintype.card G)] (v : V) :

theorem monoid_algebra.​exists_left_inverse_of_injective {k : Type u} [field k] {G : Type u} [fintype G] [group G] {V : Type u} [add_comm_group V] [module (monoid_algebra k G) V] {W : Type u} [add_comm_group W] [module (monoid_algebra k G) W] (not_dvd : ¬ring_char k fintype.card G) (f : V →ₗ[monoid_algebra k G] W) :
f.ker = (∃ (g : W →ₗ[monoid_algebra k G] V), g.comp f = linear_map.id)

theorem monoid_algebra.​submodule.​exists_is_compl {k : Type u} [field k] {G : Type u} [fintype G] [group G] {V : Type u} [add_comm_group V] [module (monoid_algebra k G) V] (not_dvd : ¬ring_char k fintype.card G) (p : submodule (monoid_algebra k G) V) :
∃ (q : submodule (monoid_algebra k G) V), is_compl p q