mathlib documentation

data.​polynomial.​algebra_map

data.​polynomial.​algebra_map

Theory of univariate polynomials

We show that polynomial A is an R-algebra when A is an R-algebra. We promote eval₂ to an algebra hom in aeval.

@[instance]
def polynomial.​algebra_of_algebra {R : Type u} {A : Type z} [comm_semiring R] [semiring A] [algebra R A] :

Note that this instance also provides algebra R (polynomial R).

Equations
theorem polynomial.​algebra_map_apply {R : Type u} {A : Type z} [comm_semiring R] [semiring A] [algebra R A] (r : R) :

theorem polynomial.​C_eq_algebra_map {R : Type u_1} [comm_ring R] (r : R) :

When we have [comm_ring R], the function C is the same as algebra_map R (polynomial R).

(But note that C is defined when R is not necessarily commutative, in which case algebra_map is not available.)

@[simp]
theorem polynomial.​alg_hom_eval₂_algebra_map {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_ring R] [ring A] [ring B] [algebra R A] [algebra R B] (p : polynomial R) (f : A →ₐ[R] B) (a : A) :

@[simp]
theorem polynomial.​eval₂_algebra_map_X {R : Type u_1} {A : Type u_2} [comm_ring R] [ring A] [algebra R A] (p : polynomial R) (f : polynomial R →ₐ[R] A) :

@[simp]
theorem polynomial.​ring_hom_eval₂_algebra_map_int {R : Type u_1} {S : Type u_2} [ring R] [ring S] (p : polynomial ) (f : R →+* S) (r : R) :

theorem polynomial.​eval₂_comp {R : Type u} {S : Type v} [comm_semiring R] {p q : polynomial R} [comm_semiring S] (f : R →+* S) {x : S} :

theorem polynomial.​eval_comp {R : Type u} {a : R} [comm_semiring R] {p q : polynomial R} :

@[instance]
def polynomial.​is_semiring_hom {R : Type u} [comm_semiring R] {p : polynomial R} :
is_semiring_hom (λ (q : polynomial R), q.comp p)

Equations
@[simp]
theorem polynomial.​mul_comp {R : Type u} [comm_semiring R] {p q r : polynomial R} :
(p * q).comp r = p.comp r * q.comp r

def polynomial.​aeval {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] :
A → (polynomial R →ₐ[R] A)

Given a valuation x of the variable in an R-algebra A, aeval R A x is the unique R-algebra homomorphism from R[X] to A sending X to x.

Equations
theorem polynomial.​aeval_def {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] (x : A) (p : polynomial R) :

@[simp]
theorem polynomial.​aeval_X {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] (x : A) :

@[simp]
theorem polynomial.​aeval_C {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] (x : A) (r : R) :

theorem polynomial.​eval_unique {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] (φ : polynomial R →ₐ[R] A) (p : polynomial R) :

theorem polynomial.​aeval_alg_hom {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] {B : Type u_1} [comm_semiring B] [algebra R B] (f : A →ₐ[R] B) (x : A) :

theorem polynomial.​aeval_alg_hom_apply {R : Type u} {A : Type z} [comm_semiring R] [comm_semiring A] [algebra R A] {B : Type u_1} [comm_semiring B] [algebra R B] (f : A →ₐ[R] B) (x : A) (p : polynomial R) :

@[simp]

theorem polynomial.​pow_comp {R : Type u} [comm_semiring R] (p q : polynomial R) (k : ) :
(p ^ k).comp q = p.comp q ^ k

theorem polynomial.​is_root_of_eval₂_map_eq_zero {R : Type u} {S : Type v} [comm_semiring R] {p : polynomial R} [comm_ring S] {f : R →+* S} (hf : function.injective f) {r : R} :
polynomial.eval₂ f (f r) p = 0p.is_root r

theorem polynomial.​is_root_of_aeval_algebra_map_eq_zero {R : Type u} {S : Type v} [comm_semiring R] [comm_ring S] [algebra R S] {p : polynomial R} (inj : function.injective (algebra_map R S)) {r : R} :

theorem polynomial.​dvd_term_of_dvd_eval_of_dvd_terms {S : Type v} [comm_ring S] {z p : S} {f : polynomial S} (i : ) :
p polynomial.eval z f(∀ (j : ), j ip f.coeff j * z ^ j)p f.coeff i * z ^ i

theorem polynomial.​dvd_term_of_is_root_of_dvd_terms {S : Type v} [comm_ring S] {r p : S} {f : polynomial S} (i : ) :
f.is_root r(∀ (j : ), j ip f.coeff j * r ^ j)p f.coeff i * r ^ i

theorem polynomial.​eval_mul_X_sub_C {R : Type u} [ring R] {p : polynomial R} (r : R) :

The evaluation map is not generally multiplicative when the coefficient ring is noncommutative, but nevertheless any polynomial of the form p * (X - monomial 0 r) is sent to zero when evaluated at r.

This is the key step in our proof of the Cayley-Hamilton theorem.