@[instance]
Equations
- vector.decidable_eq = vector.decidable_eq._proof_1.mpr (λ (a b : {l // l.length = n}), subtype.decidable_eq a b)
Equations
- vector.head ⟨a :: v, h⟩ = a
- vector.head ⟨list.nil α, h⟩ = nat.no_confusion h
Equations
- vector.nth ⟨l, h⟩ i = l.nth_le i.val _
Equations
- vector.map f ⟨l, h⟩ = ⟨list.map f l, _⟩
@[simp]
theorem
vector.map_cons
{α : Type u}
{β : Type v}
{n : ℕ}
(f : α → β)
(a : α)
(v : vector α n) :
vector.map f (a :: v) = f a :: vector.map f v
Equations
- vector.repeat a n = ⟨list.repeat a n, _⟩
Equations
- vector.remove_nth i ⟨l, p⟩ = ⟨l.remove_nth i.val, _⟩
Equations
- vector.of_fn f = f 0 :: vector.of_fn (λ (i : fin n), f i.succ)
- vector.of_fn f = vector.nil
@[simp]
theorem
vector.to_list_mk
{α : Type u}
{n : ℕ}
(v : list α)
(P : v.length = n) :
vector.to_list ⟨v, P⟩ = v
@[simp]
theorem
vector.to_list_drop
{α : Type u}
{n m : ℕ}
(v : vector α m) :
(vector.drop n v).to_list = list.drop n v.to_list
@[simp]
theorem
vector.to_list_take
{α : Type u}
{n m : ℕ}
(v : vector α m) :
(vector.take n v).to_list = list.take n v.to_list