Equations
@[instance]
Equations
- real.comm_ring = {add := comm_ring.add real.comm_ring_aux, add_assoc := _, zero := comm_ring.zero real.comm_ring_aux, zero_add := _, add_zero := _, neg := comm_ring.neg real.comm_ring_aux, add_left_neg := _, add_comm := _, mul := comm_ring.mul real.comm_ring_aux, mul_assoc := _, one := comm_ring.one real.comm_ring_aux, one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, mul_comm := _}
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
@[instance]
Equations
@[instance]
@[instance]
@[instance]
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
Coercion ℚ
→ ℝ
as a ring_hom
. Note that this
is cau_seq.completion.of_rat
, not rat.cast
.
Equations
- real.of_rat = {to_fun := cau_seq.completion.of_rat abs_is_absolute_value, map_one' := real.of_rat._proof_1, map_mul' := real.of_rat._proof_2, map_zero' := real.of_rat._proof_3, map_add' := real.of_rat._proof_4}
@[instance]
Equations
- real.has_lt = {lt := λ (x y : ℝ), quotient.lift_on₂ x y has_lt.lt real.has_lt._proof_1}
@[instance]
Equations
- real.linear_order = {le := has_le.le real.has_le, lt := has_lt.lt real.has_lt, le_refl := real.linear_order._proof_1, le_trans := real.linear_order._proof_2, lt_iff_le_not_le := real.linear_order._proof_3, le_antisymm := real.linear_order._proof_4, le_total := real.linear_order._proof_5}
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
- real.linear_ordered_comm_ring = {add := comm_ring.add real.comm_ring, add_assoc := _, zero := comm_ring.zero real.comm_ring, zero_add := _, add_zero := _, neg := comm_ring.neg real.comm_ring, add_left_neg := _, add_comm := _, mul := comm_ring.mul real.comm_ring, mul_assoc := _, one := comm_ring.one real.comm_ring, one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, le := linear_order.le real.linear_order, lt := linear_order.lt real.linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := real.linear_ordered_comm_ring._proof_1, exists_pair_ne := real.linear_ordered_comm_ring._proof_2, mul_pos := real.mul_pos, le_total := _, zero_lt_one := real.zero_lt_one, mul_comm := _}
@[instance]
@[instance]
@[instance]
@[instance]
@[instance]
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
- real.discrete_linear_ordered_field = {add := linear_ordered_comm_ring.add real.linear_ordered_comm_ring, add_assoc := _, zero := linear_ordered_comm_ring.zero real.linear_ordered_comm_ring, zero_add := _, add_zero := _, neg := linear_ordered_comm_ring.neg real.linear_ordered_comm_ring, add_left_neg := _, add_comm := _, mul := linear_ordered_comm_ring.mul real.linear_ordered_comm_ring, mul_assoc := _, one := linear_ordered_comm_ring.one real.linear_ordered_comm_ring, one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, le := linear_ordered_comm_ring.le real.linear_ordered_comm_ring, lt := linear_ordered_comm_ring.lt real.linear_ordered_comm_ring, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _, exists_pair_ne := _, mul_pos := _, le_total := _, zero_lt_one := _, mul_comm := _, inv := field.inv cau_seq.completion.field, mul_inv_cancel := real.discrete_linear_ordered_field._proof_1, inv_zero := real.discrete_linear_ordered_field._proof_2, decidable_le := λ (a b : ℝ), classical.prop_decidable (a ≤ b), decidable_eq := decidable_linear_ordered_comm_ring.decidable_eq._default linear_ordered_comm_ring.le linear_ordered_comm_ring.lt linear_ordered_comm_ring.le_refl linear_ordered_comm_ring.le_trans linear_ordered_comm_ring.lt_iff_le_not_le linear_ordered_comm_ring.le_antisymm linear_ordered_comm_ring.le_total (λ (a b : ℝ), classical.prop_decidable (a ≤ b)), decidable_lt := decidable_linear_ordered_comm_ring.decidable_lt._default linear_ordered_comm_ring.le linear_ordered_comm_ring.lt linear_ordered_comm_ring.le_refl linear_ordered_comm_ring.le_trans linear_ordered_comm_ring.lt_iff_le_not_le linear_ordered_comm_ring.le_antisymm linear_ordered_comm_ring.le_total (λ (a b : ℝ), classical.prop_decidable (a ≤ b))}
@[instance]
@[instance]
Equations
@[instance]
Equations
@[instance]
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
- a.decidable_lt b = has_lt.lt.decidable a b
@[instance]
Equations
- a.decidable_le b = has_le.le.decidable a b
@[instance]
Equations
- a.decidable_eq b = quotient.decidable_eq a b
@[instance]
Equations
theorem
real.is_cau_seq_iff_lift
{f : ℕ → ℚ} :
is_cau_seq abs f ↔ is_cau_seq abs (λ (i : ℕ), ↑(f i))
@[instance]
theorem
real.is_lub_Sup
{s : set ℝ}
{a b : ℝ} :
a ∈ s → b ∈ upper_bounds s → is_lub s (has_Sup.Sup s)
@[instance]
@[instance]
Equations
- real.conditionally_complete_linear_order = {sup := lattice.sup real.lattice, le := linear_order.le real.linear_order, lt := linear_order.lt real.linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := lattice.inf real.lattice, inf_le_left := _, inf_le_right := _, le_inf := _, Sup := has_Sup.Sup real.has_Sup, Inf := has_Inf.Inf real.has_Inf, le_cSup := real.conditionally_complete_linear_order._proof_1, cSup_le := real.conditionally_complete_linear_order._proof_2, cInf_le := real.conditionally_complete_linear_order._proof_3, le_cInf := real.conditionally_complete_linear_order._proof_4, le_total := _, decidable_le := classical.dec_rel has_le.le, decidable_eq := decidable_linear_order.decidable_eq._default linear_order.le linear_order.lt linear_order.le_refl linear_order.le_trans linear_order.lt_iff_le_not_le linear_order.le_antisymm linear_order.le_total (classical.dec_rel has_le.le), decidable_lt := decidable_linear_order.decidable_lt._default linear_order.le linear_order.lt linear_order.le_refl linear_order.le_trans linear_order.lt_iff_le_not_le linear_order.le_antisymm linear_order.le_total (classical.dec_rel has_le.le)}
@[instance]
Equations
The square root of a real number. This returns 0 for negative inputs.
Equations
- real.sqrt x = classical.some _