mathlib documentation

algebra.​opposites

algebra.​opposites

@[instance]
def opposite.​has_add (α : Type u) [has_add α] :

Equations
@[instance]
def opposite.​has_zero (α : Type u) [has_zero α] :

Equations
@[instance]
def opposite.​nontrivial (α : Type u) [nontrivial α] :

Equations
  • _ = _
  • _ = _
@[simp]
theorem opposite.​unop_eq_zero_iff (α : Type u) [has_zero α] (a : αᵒᵖ) :

@[simp]
theorem opposite.​op_eq_zero_iff (α : Type u) [has_zero α] (a : α) :
opposite.op a = 0 a = 0

@[instance]
def opposite.​add_monoid (α : Type u) [add_monoid α] :

Equations
@[instance]
def opposite.​has_neg (α : Type u) [has_neg α] :

Equations
@[instance]
def opposite.​has_mul (α : Type u) [has_mul α] :

Equations
@[instance]
def opposite.​semigroup (α : Type u) [semigroup α] :

Equations
@[instance]
def opposite.​has_one (α : Type u) [has_one α] :

Equations
@[simp]
theorem opposite.​unop_eq_one_iff (α : Type u) [has_one α] (a : αᵒᵖ) :

@[simp]
theorem opposite.​op_eq_one_iff (α : Type u) [has_one α] (a : α) :
opposite.op a = 1 a = 1

@[instance]
def opposite.​monoid (α : Type u) [monoid α] :

Equations
@[instance]

Equations
@[instance]
def opposite.​has_inv (α : Type u) [has_inv α] :

Equations
@[instance]
def opposite.​group (α : Type u) [group α] :

Equations
@[instance]
def opposite.​comm_group (α : Type u) [comm_group α] :

Equations
@[instance]
def opposite.​distrib (α : Type u) [distrib α] :

Equations
@[instance]
def opposite.​comm_ring (α : Type u) [comm_ring α] :

Equations
@[simp]
theorem opposite.​op_zero (α : Type u) [has_zero α] :

@[simp]
theorem opposite.​unop_zero (α : Type u) [has_zero α] :

@[simp]
theorem opposite.​op_one (α : Type u) [has_one α] :

@[simp]
theorem opposite.​unop_one (α : Type u) [has_one α] :

@[simp]
theorem opposite.​op_add {α : Type u} [has_add α] (x y : α) :

@[simp]
theorem opposite.​unop_add {α : Type u} [has_add α] (x y : αᵒᵖ) :

@[simp]
theorem opposite.​op_neg {α : Type u} [has_neg α] (x : α) :

@[simp]
theorem opposite.​unop_neg {α : Type u} [has_neg α] (x : αᵒᵖ) :

@[simp]
theorem opposite.​op_mul {α : Type u} [has_mul α] (x y : α) :

@[simp]
theorem opposite.​unop_mul {α : Type u} [has_mul α] (x y : αᵒᵖ) :

@[simp]
theorem opposite.​op_inv {α : Type u} [has_inv α] (x : α) :

@[simp]
theorem opposite.​unop_inv {α : Type u} [has_inv α] (x : αᵒᵖ) :

@[simp]
theorem opposite.​op_sub {α : Type u} [add_group α] (x y : α) :

@[simp]
theorem opposite.​unop_sub {α : Type u} [add_group α] (x y : αᵒᵖ) :

def opposite.​op_add_hom {α : Type u} [add_comm_monoid α] :

The function op is a homomorphism of additive commutative monoids.

Equations
def opposite.​unop_add_hom {α : Type u} [add_comm_monoid α] :

The function unop is a homomorphism of additive commutative monoids.

Equations