mathlib documentation

ring_theory.​maps

ring_theory.​maps

Ring antihomomorphisms, isomorphisms, antiisomorphisms and involutions

This file defines ring antihomomorphisms, antiisomorphism and involutions and proves basic properties of them.

Notations

All types defined in this file are given a coercion to the underlying function.

References

Tags

Ring isomorphism, automorphism, antihomomorphism, antiisomorphism, antiautomorphism, involution

structure ring_invo (R : Type u_1) [semiring R] :
Type u_1

A ring involution

def ring_invo.​mk' {R : Type u_1} [semiring R] (f : R →+* Rᵒᵖ) :
(∀ (r : R), opposite.unop (f (opposite.unop (f r))) = r)ring_invo R

Construct a ring involution from a ring homomorphism.

Equations
@[instance]

Equations
@[simp]
theorem ring_invo.​to_fun_eq_coe {R : Type u_1} [semiring R] (f : ring_invo R) :

theorem ring_invo.​coe_ring_equiv {R : Type u_1} [semiring R] (f : ring_invo R) (a : R) :
f a = f a

@[simp]
theorem ring_invo.​map_eq_zero_iff {R : Type u_1} [semiring R] (f : ring_invo R) {x : R} :
f x = 0 x = 0

@[instance]
def ring_invo.​inhabited (R : Type u_1) [comm_ring R] :

Equations