mathlib documentation

measure_theory.​simple_func_dense

measure_theory.​simple_func_dense

Density of simple functions

Show that each Borel measurable function can be approximated, both pointwise and in norm, by a sequence of simple functions.

theorem measure_theory.​simple_func_sequence_tendsto {α : Type u} {β : Type v} [measurable_space α] [normed_group β] [topological_space.second_countable_topology β] [measurable_space β] [borel_space β] {f : α → β} :
measurable f(∃ (F : measure_theory.simple_func α β), ∀ (x : α), filter.tendsto (λ (n : ), (F n) x) filter.at_top (nhds (f x)) ∀ (n : ), (F n) x f x + f x)

theorem measure_theory.​simple_func_sequence_tendsto' {α : Type u} {β : Type v} [measurable_space α] [normed_group β] [topological_space.second_countable_topology β] [measurable_space β] [borel_space β] {μ : measure_theory.measure α} {f : α → β} :
measurable fmeasure_theory.integrable f μ(∃ (F : measure_theory.simple_func α β), (∀ (n : ), measure_theory.integrable (F n) μ) filter.tendsto (λ (n : ), ∫⁻ (x : α), (nndist ((F n) x) (f x)) μ) filter.at_top (nhds 0))